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We present a static analysis approach that combines concrete values and symbolic expressions. This symbolic
value-flow (łsymvalicž) analysis models program behavior with high precision, e.g., full path sensitivity.
To achieve deep modeling of program semantics, the analysis relies on a symbiotic relationship between a
traditional static analysis fixpoint computation and a symbolic solver: the solver does not merely receive a
complex łpath conditionž to solve, but is instead invoked repeatedly (often tens or hundreds of thousands of
times), in close cooperation with the flow computation of the analysis.

The result of the symvalic analysis architecture is a static modeling of program behavior that is much more
complete than symbolic execution, much more precise than conventional static analysis, and domain-agnostic:
no special-purpose definition of anti-patterns is necessary in order to compute violations of safety conditions
with high precision.

We apply the analysis to the domain of Ethereum smart contracts. This domain represents a fundamental
challenge for program analysis approaches: despite numerous publications, research work has not been
effective at uncovering vulnerabilities of high real-world value.

In systematic comparison of symvalic analysis with past tools, we find significantly increased completeness
(shown as 83-96% statement coverage and more true error reports) combined with much higher precision,
as measured by rate of true positive reports. In terms of real-world impact, since the beginning of 2021, the
analysis has resulted in the discovery and disclosure of several critical vulnerabilities, over funds in the many
millions of dollars. Six separate bug bounties totaling over $350K have been awarded for these disclosures.
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1 INTRODUCTION

Static analysis is distinguished among program analysis techniques (e.g., testing [Czech et al.
2016; Meyer 2008], model checking [Clarke et al. 1986; Jhala and Majumdar 2009], or symbolic

execution [Baldoni et al. 2018; King 1976]) by its emphasis on completeness, i.e., its attempt to model
all (or as many as possible) program behaviors. To achieve this goal under a realistic time budget,
static analysis often has to sacrifice some precision: the analysis may consider combinations of
values that may never appear in a real execution. Maintaining high precision, while achieving
completeness and scalability, remains a formidable challenge.

In this work, we present an analysis that attempts to meet this challenge, under realistic domain
assumptions. The analysis maintains high precision (closely analogous to that of model checking or
full program execution) while achieving very high completeness, as measured in terms of coverage
of program behaviors. For conciseness purposes, we give to the analysis architecture the name
symvalic analysis, for łsymbolic+value-flow static analysisž.

A symvalic analysis computes for each program variable a set of possible concrete values as well
as symbolic expressions. The analysis is path-sensitive: values propagate to a variable at a program
point only if they satisfy (modulo natural analysis over-approximation) the conditions under which
the program point would be reachable. In order to satisfy conditions, the analysis needs to solve
equalities and inequalities over both concrete and symbolic values. To do this, the analysis appeals
to a symbolic solver and simplifier tightly integrated with the analysis core. At the same time, most
of the analysis coverage of the program is done inexpensively, based on concrete valuesÐe.g., the
analysis tries selected small integers, large integers, and constants from the program text as values
of variables at every external entry point.
The above description is perhaps reminiscent of dynamic-symbolic (a.k.a. concolic) execu-

tion [Cadar et al. 2008; Godefroid 2007; Godefroid et al. 2005; Sen and Agha 2006; Sen et al.
2005; Tillmann and de Halleux 2008; Tillmann and Schulte 2006]. Some of the insights are indeed
similar. The use of concrete values whenever possible (and, conversely, the appeal to symbolic
solving selectively) is responsible for the symvalic analysis scalability, much as it has been for
dynamic-symbolic execution. However, symvalic analysis also has significant differences from
dynamic-symbolic execution. Most notably, it is a static analysis and not full program execution.
To model a program statement, symvalic analysis does not need to create a full context of values
for every other program variable and (heap) storage location. Indeed, symvalic analysis treats
concrete values highly efficiently, manipulating them using set-at-a-time reasoning, instead of
individually. This is the value-flow aspect of symvalic analysis: sets of values are propagated using
mass operations (table joins) using a standard fixpoint (Datalog) analysis engine.
We apply the idea of symvalic analysis to Ethereum smart contracts [Wood 2014]: a domain

where high-precision, high-completeness analyses are in demand. Smart contracts are programs
that handle monetary assets whose value occasionally rises to the many millions of dollars. Tens of
security researchers pore over the code of these contracts daily. Discovering an important bug is a
source of both fame and reward.

Conventional analysis techniques are rarely effective for high-value contracts: Perez and Livshits
[2021] recently find that only 0.27% of the funds reported vulnerable by some of the most prominent
research tools have truly been subsequently exploited. Simply put, program analysis can help with
vulnerabilities in contracts that have not received much scrutiny, but rarely helps with high-value
vulnerabilities that have not been found through other means.

Partly addressing this need, symvalic analysis has already enjoyed significant success in the
analysis of smart contracts, with several high-value vulnerabilities discovered.
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1 address admin; // set up at construction , not in contract code

2

3 function withdrawToken(IERC20 token , uint256 amount , address sendTo) external {

4 onlyAdmin ();

5 uint256 adjusted = amount * 103 / 100;

6 if (amount >= 10000 && amount < 100000)

7 token.transfer(sendTo , adjusted); ...

8 }

9

10 function onlyAdmin () internal view {

11 require(msg.sender == admin , "only admin");

12 }

Fig. 1. Illustration of symvalic reasoning.

In brief, our work claims the following contributions:

● We introduce symvalic analysis: an unconventional static analysis design that combines com-
pleteness and precision.
– Symvalic analysis employs a value-flow fixpoint computation in close cooperation with symbolic

reasoning. This aspect is qualitatively different from past approaches that generate symbolic
expressions and dispatch a solver to reason about themÐe.g., in our setting the solver is as-if
invoked hundreds of thousands or even millions of times in the course of an analysis.

– Symvalic analysis recovers precision by employing dependencies between inferred values: a
value is inferred conditionally upon a set of other value assignments. Several elements of this
mechanism, such as the use of the values of storage reads as dependency elements, have no
counterpart in the literature.

● The analysis is applied to the high-value domain of Ethereum smart contracts and exhibits
significant benefits.
– Extensive experiments against leading industrial tools show precision, scalability, and com-
pleteness advantages: 30% more true vulnerability reports, much greater precision, and 85%
statement coverage on high-value contracts (vs. 49% for the closest competitor).

– In actual deployment, symvalic analysis has been responsible for detecting several high-value
vulnerabilities, for monetary amounts in the many millions to tens of millions of dollars. Funds
directly rescued (i.e., via white-hat hacking) due to symvalic analysis reports reach $6M. We
have received 6 separate bug bounties for these disclosures, for a total value of $350K.

Brief Illustration. For a preliminary illustration of symvalic analysis, consider the fragment of a
smart contract shown in Figure 1. (The code is written in the Solidity language. Solidity is dominant,
accounting for more than 99% of deployed Ethereum smart contracts.)
A static analysis may attempt to reason about the feasibility of calling token.transfer with a

specific recipient (sendTo) and transfer amount (adjusted). There are two guards that dominate the
execution of the transfer statement, split in separate functions.
First, the external caller of the withdrawToken function (i.e., an end-user or separate contract

identified by msg.sender) should be the same as the value of storage variable admin. (Otherwise the
require statement in line 11 of onlyAdmin, called on line 4, fails and the transaction reverts.) This
alone precludes untrusted callers. Symvalic analysis captures this behavior by maintaining two
symbolic values, ńunprivileged-userż and its contrasting ńownerż. These are possible initial values
for the special variable msg.sender. The ńownerż value is also a possible initial value of storage
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locations: a contract’s owner has set up the contract’s initial contents. Therefore, at the return point
of the call onlyAdmin() (line 4, via line 12), symvalic analysis has maintained a single possibility
for msg.sender: the value ńownerż. Value ńunprivileged-userż is eliminated from consideration
at that program point, since it cannot satisfy the condition msg.sender == admin. This showcases
the path-sensitive nature of the analysis. Notice also that the condition is in a separate function:
symvalic analysis is fully inter-procedural (and stronly context-sensitive, via the mechanism of
dependenciesÐsee below).

For the condition łamount >= 10000 && amount < 100000ž in line 6, symvalic analysis will initially
assign amount a set of possible values, consisting of łinterestingž integers and symbols. This is
because amount is an external argument. For instance, amount may be considered to hold values 42,
0, and ńuser-unique-valueż. The latter, symbolic, value plays the role of a free variable in symbolic
evaluation. At the condition on amount on line 6, the two concrete values will be eliminated: the
unified symbolic solver and simplifier will determine, e.g., that 42 >= 10000 is false. The same
solver will be asked about the symbolic value: is it true that ńuser-unique-valueż >= 10000 &&

ńuser-unique-valueż < 100000? Since this value plays the role of a free variable, the solver will
suggest a solution to the condition: 10000. This solution will become a fourth possibility for amount.
At the token.transfer call in line 7, the only possible (concrete) value for amount is 10000.

Symvalic analysis will not perform full, detailed execution. Reasoning over the values of variables
is done on a per-set basis. For instance, variable adjusted will be inferred to contain 4 different
values after line 5: 0, 43, 10300 and ‘ńuser-unique-valueż * 103 / 100’. Treating values by means of
independent sets may be performant, but ignores actual execution conditions. Observe that variable
adjusted is not changed after its initial assignment in line 5, nor filtered (i.e., used in conditions)
elsewhere in the computation. Does that mean that the amount transferred can be any of (the
concrete among) the above valuesÐ0, 43, 10300? The answer is no. Although symvalic analysis
does set-at-a-time processing of values, it tries to achieve precision by maintaining dependencies
over crucial variables. Variable amount is one such: it is an external input variable, hence other
variables that depend on it maintain this dependency. Therefore, the analysis actually computes
that the value 10300 for adjusted is the only one compatible with the value 10000 for amount, which
is necessary for reaching that program point. More precisely, adjusted holds 10300 dependent upon
amount holding 10000 and 10300 is the only inferred (concrete) transfer value.

Associating values with dependencies is a natural extension of context sensitivity in static analysis.
With appropriate choices of program entities to serve as root dependencies, a symvalic analysis can
maintain high precision while offering completeness and scalability.

2 BACKGROUND ANDMOTIVATION

Before introducing symvalic analysis in full, it is useful to motivate it and illustrate its positioning in
the crowded space of analysis techniques. Specifically, we ask łwhy are other analysis approaches
(such as dynamic-symbolic execution or regular value-flow static analysis) typically not sufficient?ž

Comparison to Dynamic-Symbolic Execution. Symbolic execution [King 1976] is a solver-aided
program analysis that has enjoyed practical success in recent years, in the form of dynamic-
symbolic or (concolic, for concrete-symbolic) execution [Cadar et al. 2008; Godefroid et al. 2005;
Sen et al. 2005; Tillmann and de Halleux 2008]. The approach has similarities to symvalic analysis,
however it is important to not lose sight of the foundational differences. Symvalic analysis is not
program execution, but instead a static analysis approach. This means that the analysis is not
obliged to fully respect program semantics. Instead, the analysis can readily over-approximate any
aspect of program execution the analysis designer sees fit. For instance:
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● The analysis can overapproximate control flow: it can consider some conditions to be both
satisfiable and negatable without needing to produce specific values for them. (This is likely
treatment for conditions that are dependent on complex external parametersÐe.g., in the
Ethereum smart contracts setting, on the amount or price of gas left1 or the exact monetary
balance of the current account.) Modeling such technical specifics down to concrete numbers
is a bad fit for a static analysis, which tries to capture all possible behaviors.
● The analysis can overapproximate data flow: it can decide, e.g., during analyzing a loop, that
a certain variable has a top value, and, thus, can refer to any element of an array. The analysis
does not need to faithfully emulate the full iteration of the loop up to the point of reaching a
certain array elementÐit just needs to estimate that it does so eventually. (The estimate can
also be false, which may be reflected as a loss of precision in the analysis results.)
● The analysis can produce abstract models of the heap (or other shared storage). For instance,
the analysis can use symbolic expressions as heap addresses, or can use abstraction (e.g.,
consider all addresses that are functions of the external contract caller to be a single abstract
address).

As a result, symvalic analysis can cover substantially more behaviors than symbolic execution (at
a theoretical precision cost, whose magnitude needs to be evaluated experimentally). This addresses
the significant completeness problems that (dynamic-)symbolic execution exhibits in practice, even
when it attempts to find a single execution to cover specific program branches. For instance, the
Manticore symbolic execution framework [Mossberg et al. 2019] (one of the foremost for Ethereum
smart contracts) łachieves on average 66% code coveragež [Trail of Bits 2020a]. This prompted
the Trail of Bits security firm’s company account to tweet łWhy can’t a symbolic executor achieve

100% coverage in a teensy little smart contract?ž[Trail of Bits 2020b], capturing the frustration of
consumers of analysis results.
For a taste of how simple code can baffle a symbolic execution engine, consider the following

(slightly simplified) real-code excerpt from an Ethereum smart contract:

function safeBatchTransferFrom(address from , address to, uint256 [] calldata ids ,

uint256 [] calldata values) external {

require(to != address (0x0));

require(ids.length == values.length);

require(from == msg.sender || operatorApproval[from][msg.sender ]);

for (uint256 i = 0; i < ids.length; ++i) {

uint256 id = ids[i];

uint256 value = values[i];

balances[id][from] = balances[id][from].sub(value);

balances[id][to] = value.add(balances[id][to]);

}

}

To exercise the code, the symbolic execution engine needs to invent arrays of values for ids and
values, as well as consistent contents for two storage (i.e., analogous to heap, but on the blockchain)
structures. These structures, balances and operatorApproval are maps of maps and their contents
are not free variables: they can only be set in whatever ways other code permits. Additionally, these
contents have to include the current caller of the contract (msg.sender), which is also not a free
variable for symbolic solving purposes: an attacker cannot spoof its address to match another. If
any aspect of these constraints ends up too complex to satisfy (e.g., the solver cannot invent arrays

1Gas is a quantity used to assign a real-world cost to Ethereum computation, to avoid abuse of the network. It has
instruction-based accounting, therefore it is programmatically visible to the smart contract execution.
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ids and values of the same length, or cannot invent contents of ids that also appear in the first
level of balances) symbolic execution will fail to reach all statements of the above code.
A static analysis, such as symvalic analysis, can manage to cover the above code a lot more

easily, by employing abstraction and over-approximation. For instance, the analysis design may
be collapsing into a single abstract value the entire first level of mappings, as long as the key is
set from externally supplied values. This means treating expressions such as balances[id][from]
effectively as the much simpler balances[ńanyż][from]. Some of the fidelity of a full execution
is lost, however the analysis designer accepts this abstraction by explicitly employing it when
they think it will not affect precisionÐin this case, under the condition that the first-level key is
externally tainted.

Despite the theoretical precision loss, as later experiments demonstrate, symvalic analysis offers
greatly increased coverage combined with high precision.

Comparison to Value-Flow Static Analysis. Static analysis can model a lot more program behaviors
than a full-detail program execution, but is still faced with formidable scalability and precision
challenges. A path-sensitive whole-program analysis, such as the symvalic analysis proposed, has
extremely heavy demands, in terms of symbolic solving to satisfy program conditions. Conventional
static analysis (tracking the flow of sets of values via a fixpoint computation) typically fares very
well in terms of scalability, and often achieves significant precision. Several such analyses have
been proposed in the past for the Ethereum space [Grech et al. 2018; Tsankov et al. 2018].

Some of these analysis are even argued to be highly-precise, despite having a shallow understand-
ing of the codeÐe.g., not modeling symbolic conditions for reaching a certain program statement.
The reason for this precision, however, is the careful (but ad hoc) analysis design that directly
attempts to recognize both known unsafe patterns and countermeasures for these patterns. Exam-
ples of this approach are the recent MadMax [Grech et al. 2018] and Ethainter tools [Brent et al.
2020]Ðwe illustrate with the latter.
Ethainter claims an extremely high precision (i.e., true positive rate) of 82.5%. To achieve this

rate, the analysis seeks a code pattern that is commonly employed in a wrong way. Consider the
simple contract below:

contract Victim {

mapping(address => bool) authorized;

function init() public {

authorized[msg.sender] = true;

}

function sensitive(address recipient) public {

require(authorized[msg.sender ]);

selfdestruct(recipient);

}

}

Function sensitive self-destroys the contract, sending all its assets to a recipient address. This
operation needs to be guarded, in the Ethainter vocabulary. A guard is a condition that checks some
property of msg.senderÐthe caller of the transaction. Additionally, if the guard looks up a data
structure element with msg.sender as key, the data structure should not be tainted by a different
operation. Violating either of these conditions yields a warning. In our example, a warning is
emitted because there is a guard but it accesses a data structure (authorized[msg.sender]) that can
be externally tainted (through init).

Both of these conditions can be detected with high precision, yielding high rates of true positives
when contracts are coded in a specific style. However, the conditions are rather rigid and ad hoc. For
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instance, Ethainter cannot recognize guarding via a require clause in a separate function, as in our
earlier example of Figure 1: the analysis will issue a false-positive warning in this case.
In contrast, symvalic analysis knows nothing about msg.sender guards or data structures that

are tainted. Phrasing the same question in symvalic analysis is a mere 2-line query, with no domain
modeling, yet much greater generality. Effectively, we ask symvalic analysis łcan the selfdestruct

statement ever be invoked by transactions whose originator is ńunprivileged-userż and with an
argument that is a (user-settable) free variable?ž
Thus, the advantage of the symvalic approach is that it is not tied to specific unsafe or counter-

measure code patterns. The contract can be protecting (or failing to effectively protect) sensitive
operations in any arbitrary way. Symvalic analysis will recognize both safe and unsafe uses, since
it closely models the conditions that govern a statement’s execution. As a result, symvalic analysis
can be both more precise and more complete than custom-designed analyses.

3 SYMBOLIC+VALUE-FLOW STATIC ANALYSIS

We next present an informal overview of symbolic+value-flow analysis, highlighting its design
principles. Section 4 will later show a precise model of the analysis.

3.1 Overview

Symbolic+Value-Flow static analysis (łsymvalicž analysis, for short) is much like a common inter-
procedural data-flow analysis: a łvalue-flowž analysis, such as a points-to or a taint analysis. Being
a value-flow analysis implies that every variable is statically assigned a finite set of values and a
fixpoint computation grows the finite sets according to monotonic equations.

In symvalic analysis, the values can be both concrete (e.g., numbers) and entire symbolic expres-
sions. For instance, consider again the earlier example function sensitive:

function sensitive(address recipient) public {

require(authorized[msg.sender ]);

selfdestruct(recipient);

}

The analysis will consider a set of concrete and symbolic values for all external input variables.
For instance, for numeric variables, the analysis considers small constants (0,1, and up to 3 constants
under 256), large constants (to cause overflow), and a pseudo-random choice of constants from the
program text.
For external inputs of łcontract addressž type, such as the msg.sender implicit argument, the

analysis will consider values that include:

● constants in the contract text that resemble addresses (i.e., 160-bit integers)
● the symbolic values ńownerż and ńunprivileged-userż.

Similarly, the values initially considered for the recipient argument include:

● constants in the contract text that resemble addresses
● the symbolic values ńowner-unique-valueż and ńuser-unique-valueż.

The difference between the symbolic values is that the former (ńownerż and ńunprivileged-userż)
will be considered bound-variables for symbolic reasoning purposes: although we treat them
symbolically, the caller cannot set them freely. In contrast, the latter (ńowner-unique-valueż and
ńuser-unique-valueż) are free variables and symbolic reasoning can propose concrete values for
them, in order to solve constraints. Section 3.2 will describe in more detail how these values
are dependent: the analysis will model separately the case of the current caller of the contract
being ńownerż and that of it being ńunprivileged-userż, and similarly for the values they supply to
arguments.
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Fig. 2. Symvalic Analysis Architecture: API (slightly simplified) between symbolic reasoning and value
propagation shown.

Symbolic values propagate and are used to form more complex expressions, whereas
concrete values get constant-folded. For instance, in the example, the program expression
authorized[msg.sender] is a lookup in a mapping structure on Ethereum storage (i.e., analogous to
the heap in a conventional language). Due to the way Ethereum storage is organized, the expression
is loading from the symbolic address SHA3(ńownerż ++ 0x0)ÐSHA3 is the Keccak-256 hash function,
++ a byte array concatenation operator, and 0x0 (i.e., zero) the constant offset that identifies the
authorized mapping among other attributes in storage. This symbolic expression is propagated by
the analysis as a value for the corresponding local variable (unnamed in the source language but
present in the intermediate representation).

The analysis proceeds via a close interaction of a value-flow fixpoint loop and a symbolic reasoner.
Figure 2 shows the overall architecture, including the symbolic reasoning component and the value-
flow component, as well as the interface between them and the two sub-components of symbolic
reasoning: a bottom-up and a top-down component. The full interface and bottom-up/top-down
distinction are elements of importance mostly for practical concerns, especially efficiency. Therefore
we postpone the full discussion of such specifics to Section 5, preferring to concentrate on the
high-level elements for now.

If viewed as an idealized reasoner over infinite expressions (i.e., without worrying about compu-
tational efficiency) the main products of the symbolic reasoner are:

● a predicate normalize(expr, normExpr) that returns for each expression its minimal equivalent
form. This applies to both arithmetic and logical expressions;

● a predicate implies(exprStrong, exprWeak) that checks whether one logical expression implies
another;

● a predicate valueForVar(var, expr) that proposes values (i.e., symbolic expressions) for free
variable var, so that logical conditions get satisfied. The solver proposes such solutions in bulk,
for any interesting logical expressions (the main case being equalities, which are usually much
harder to satisfy than inequalities) and the analysis filters the solutions it chooses to truly
tryÐe.g., if they satisfy an equality that was previously not satisfied.

Inevitably, all three predicates are incomplete, i.e., will not capture all (infinite) true relationships.
The analysis appeals to these predicates throughout normal value propagation. Symbolic values

are continuously normalized (i.e., simplified up to minimal form) and are also used to satisfy control-
flow constraints, i.e., predicates in conditional statements. This makes the analysis path-sensitive:
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the information pertaining to a program statement is derived to be compatible with the conditions
necessary for reaching the statement. Mechanism-wise, this is a part of the dependencies machinery,
described in Section 3.2.

The close interaction of value-flow and symbolic reasoning is a rather unconventional aspect of
symvalic analysis. This is in contrast to explicit invocation of solvers in a static analysis [Krupp
and Rossow 2018; Nikolić et al. 2018; Schneidewind et al. 2020]. It is common for a static analysis to
collect a large condition and dispatch an external solver (e.g., Z3 [De Moura and Bjùrner 2008]) to
satisfy the condition. Symvalic analysis, however, invokes the symbolic solver a lot more regularly,
to continuously simplify and solve conditions. Such appeals to the symbolic solver are essential, in
the heart of the analysis, as the model of Section 4 will illustrate.

3.2 Precision and Dependencies

Symvalic analysis is a static analysis, aiming for completeness, i.e., covering many program behav-
iors. However the analysis is neither sound nor complete: it can both model unrealizable behaviors
and miss actual behaviors. The analysis intends to strike a good balance between completeness and
precision: to cover a lot more behaviors than symbolic execution, while still predicting behaviors
that are realizable to a large degree.

To achieve precision, while keeping a set-based treatment, symvalic analysis associates variable-
value tuples (as well as statements in the code) with dependencies. Every analysis inference of the
form łvariable v may have value (i.e., concrete or symbolic expression) 𝑒ž (as well as of the form
łthis statement is reachablež) is associated with sets of mappings of variables to values that have led
the analysis to make the inference.

We distinguish two kinds of dependencies: local (reset per-function) and transaction (i.e., current-
execution) dependencies. We write v → 𝑒 ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ to designate that variable v may hold value 𝑒
under local dependencies𝑑𝐿 and transaction dependencies𝑑𝑇 . (When there is no need to distinguish
local and transaction dependencies, we write v → 𝑒 ∐︀𝐷̃︀.) To illustrate dependencies, consider a
simple contract fragment:

contract Safe {

address owner; // set at construction

mapping (address => uint) public balanceOf;

function deposit(address to,uint amount) public {

require(msg.sender == owner);

uint curBalance = balanceOf[to];

uint nextBalance = curBalance + amount *90/100;

balanceOf[to] = nextBalance;

}

}

Let us focus on the value of variable nextBalance during an invocation deposit(0x42, 200).2

For nextBalance to even have a value, its assignment statement needs to be reachable. Therefore
the łrequire(msg.sender == owner)ž statement needs to be satisfied. This forces the mapping
⋃︁sender → ńownerż⨄︁ to appear in the transaction dependencies. (The symbolic variable sender

stands for the Solidity msg.sender expression and ńownerż is a symbolic value generated to represent
the contract that originally called the current contract’s constructor and, thus, set storage fields to
initial values.)

2Contract addresses are 160-bit integers and generated randomly. We show a very unlikely short address (0x42) for the
sake of conciseness.
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Additionally, values of local variables will be parts of the dependencies. Assume that at some
point the analysis has inferred that storage mapping balanceOf[0x42] has two possible values: 1
and 80, and then considers the call deposit(0x42, 200).

The inferences for variable nextBalance will then be:
nextBalance→ 181 ∐︀ {[to→ 0x42], [amount→ 200], [curBalance→ 1] } ; {[sender→ ńownerż] } ̃︀}
and

nextBalance→ 260 ∐︀ {[to→ 0x42], [amount→ 200], [curBalance→ 80] }; {[sender→ ńownerż] } ̃︀}.
The first of the two inferences can be read as łnextBalance is expected to hold the value 181 in

executions where to holds value 0x42, amount holds value 200, the most recent storage load into
variable curBalance returned value 1, and the transaction initiator (i.e., external caller) is ńownerżž.
The first three mappings make up the local dependencies for the inference, whereas the last is the
transaction dependency.

Dependencies are combined, with an operator denoted ⊕. Combination of dependencies happens
for every control-flow or data-flow join point: when two branches merge, or when two values
are used as operands in the same operation. (Section 4 will make this fully preciseÐour current
description is just for exposition.) Combining two sets of dependencies is a check for compatibility,
to prevent mixing information from guaranteed-separate executions. Combining dependencies
succeeds if there are no conflicting mappings for the same variable. For instance, the two inferences
above cannot be combined: they conflict on the mapping for variable curBalance. If dependencies
do not conflict (thus, combining them succeeds), combination is a mere pairwise union of the
mappings sets.

3.3 Soundness and Completeness

Using the Safe contract example, we can illustrate why symvalic analysis chooses to be neither
sound nor complete, i.e., why it accepts some incompleteness in order to be more precise, and
why it accepts less-than-full precision (e.g., false positives) in order to be more complete or more
scalable.3

Incompleteness. The last statement of function deposit stores nextBalance back into the persistent
storage mapping balanceOf[0x42]. Therefore, new inferences are possible for variable nextBalance,
which again cause new values to flow into balanceOf[0x42], ad infinitum. Static analysis typically
resolves this potentially infinite computation by overapproximation (e.g., a finite-height lattice that
joins values into abstract values, at the expense of some loss of precision). In contrast, symbolic
execution resolves non-termination (arising in the case of looping) by arbitrarily truncating execu-
tion traces (e.g., unrolling loops only a small number of times, or executing a fixed number of total
instructions).

Symvalic analysis is agnostic regarding the handling of cyclic flow: both overapproximation and
finite truncation are acceptable, per case. For instance, the current symvalic setting (described in
Section 5) uses overapproximation for values from some sources (e.g., environment variables, such
as gas remaining, current block number, miner of block). In most cases, however, the analysis favors

3Terminology note: łsoundnessž and łcompletenessž are duals. For an analysis that issues warnings, the absence of false
positives can be termed łsoundnessž, if the analysis is viewed as a bug finder, or łcompletenessž, if the analysis is viewed as
a correctness verifier. Conversely, the absence of false negatives (i.e., łno warningž implies łno problem existsž) can be
termed łcompletenessž, if the analysis is viewed as a bug finder, and łsoundnessž, if the analysis is viewed as a correctness
verifier. Since our analysis is neither sound nor complete, throughout the paper we prefer to use the terms łcompletež and
łprecisež, because they are closer to intuitive meaning: łcompletež means covering more behaviors (e.g., greater statement
coverage, better statistics in revealing known bugs), whereas łprecisež refers to modeled behaviors being realizable. This
terminology is also easier to treat in quantifiable, non-binary terms. For instance, readers might be surprised to read an
analysis being described as łmore soundž, but not when it is being described as łmore precisež or łmore completež.
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concrete numeric values (such as those in balanceOf[0x42]), which yield other concrete values, up
to a finite number of arithmetic operations. This treatment is one that explicitly favors precision
over completeness: the analysis is not guaranteed to model all values arising in real executions.
The advantage, however, is that the values that the analysis considers are likely to be realizable, i.e.,
precision is enhanced.

Precision. Dependencies can lend arbitrary precision to an analysis. Even fully concrete execution
can, for instance, be simulated by maintaining in dependencies all dynamic variables of an execution.
Conceptually, dependencies can be viewed as a generalization of context-sensitivity [Sharir and
Pnueli 1981] in static analysis, or an instance of relational analysis (e.g., [Nielson et al. 1999,
Sec.4.4.1], [Mùller and Schwartzbach 2018, Sec.7]). Such mechanisms group together dynamic
executions for uniform static treatment. Precision arises because executions mapped to different
groups are never confused. The challenge, however, is to maintain sufficient precision without
suffering from extreme lack of scalability (termed the state explosion problem). The state explosion
problem is the bane of fully-precise program analysis approaches, such as concrete testing or
concrete-state model checking. The number of possible value combinations rises exponentially,
per set combinatorics. In the setting of symvalic analysis, if the dependencies mechanism were to
keep full concrete state (i.e., what precisely are the contents of storage or variables in a simulated
execution), the analysis would suffer tremendously in scalability. In practice, even dependencies on
a handful of variables can render the analysis unscalable.

Symvalic analysis maintains a balance between precision and performance by computing depen-
dencies only on a small subset of program variables. As a consequence, the analysis can produce
warnings or values that are imprecise, i.e., do not correspond to actual executions.

These precision limits of dependencies in the analysis are as follows (with current defaults listed
in parentheses, for concreteness):

● A bounded number of arguments of the current function, such as to and amount in the example.
(Currently: up to 3 arguments are kept as local dependencies.)

● A bounded number of local variables that load values from shared memory (storage), such as
curBalance in the example. (Currently: the first variable loading from storage per function is
kept in local dependencies.)

● A bounded number of external arguments (i.e., arguments supplied at the original entry point of
the transaction, by an external caller). (Currently: the first 2 arguments of the transaction entry
point are kept in transaction dependencies. This case is not shown in the example. However, if
we were to change the code to make function depositÐwhich is a transaction entry pointÐcall
a different, internal function, the values of deposit’s arguments, to and amount, would be kept
in the transaction dependencies when analyzing the internal function.)

● The transaction’s current caller (msg.sender in Solidity). (Currently: kept in transaction depen-
dencies.)

4 ANALYSIS MODEL

Armed with the design insights of the previous section, we can next see symvalic analysis in full
detail. The setting is simplified but fully representative of the interesting cases.

4.1 Input and Environment

Figure 3 shows a minimal input language that we will use for illustration. The domains of the
analysis (and meta-variables used subsequently) comprise:
− v, u, t ∈ 𝑉 , a set of variables,
− fun ∈ 𝐹 , a set of functions,
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Instruction Operand Types Description

𝑖 ∶ v ≙ t⊙ u 𝐼×𝑉 ×𝑉 ×𝑉 Binary operations
𝑖 ∶ v ≙ 𝜙(𝑢𝑖) 𝐼×𝑉 ×𝑉 𝑛 Phi instructions
𝑖 ∶ v ≙ JuK 𝐼×𝑉 ×𝑉 Loads
𝑖 ∶ JvK ≙ u 𝐼×𝑉 ×𝑉 Stores
𝑖 ∶ jumpif v 𝑗 𝐼×𝑉 ×𝐼 Conditional jumps
𝑖 ∶ fun(𝑢 𝑗) 𝐼×𝐹×𝑉 𝑛 Calls

Fig. 3. Intermediate Representation instruction Set.

Notation Description

Def(fun(a):i) Function fun is defined with formal argument vector a and first instruction 𝑖 .

𝑖
next
ÐÐ→ 𝑗 instruction 𝑖 has 𝑗 as a possible next.

Ok(𝐷1 ⊕𝐷2 . . .) Dependencies combination is valid (no conflicting dependencies for same variable).

v→ 𝑒 ∐︀𝐷̃︀ Variable v may hold symbolic expression 𝑒 under dependencies 𝐷 .

J𝑎K⇒ 𝑒 Storage location 𝑎 (a symbolic expression) may have contents 𝑒 .

⋃︀𝑖⋃︀ ∐︀𝐷̃︀ or ⋃︀𝑖⋃︀ ∐︀𝑑𝐿 ;𝑑𝑇 ̃︀ Instruction 𝑖 is reachable with dependencies 𝐷 .

(Expanded: local deps. 𝑑𝐿 , transaction deps. 𝑑𝑇 .)

Oracle(v) = 𝑒 The symbolic solver (or default logic) suggests value 𝑒 for
external arg./environment variable v.

normalize(𝑒) = 𝑒0 Expression 𝑒 normalizes (simplifies) to 𝑒𝑜 .

Fig. 4. Definitions of notation used in the rules. The first two relations encode input program information and
a helper function. The next three are the relations computed by the analysis. The last two are the interface
with the symbolic solver.

− 𝑖, 𝑗 ∈ 𝐼 , a set of instruction labels,
− 𝑛 ∈ N, the set of natural numbers.
The simplified language omits (without loss of generality) features that can be translated away

and their symvalic treatment is well-represented in that of others: there are no return values or
explicit return statements, unary operators, private functions (all functions are public entry points),
or environment-consulting operations.

Figure 4 introduces the relations that the analysis accepts as input, as well as those it computes.
The analysis input consists of a set of instructions, linked into a control-flow graph, via relation

𝑖
next
ÐÐ→ 𝑗 (over 𝐼×𝐼 ). Another straightforward input is Def, which shows the type signature and

initial instruction of a function. Ok is notation to signify that a combination of dependencies
is valid. (By convention, we omit Ok in the antecedent of rules where the result of combining
dependencies is used in the consequent: an invalid combination produces no result, hence a result
implicitly establishes validity in the antecedent.)
The main concepts established by the analysis are:

− v→ 𝑒 ∐︀𝐷̃︀, discussed in Section 3.2
− J𝑎K⇒ 𝑒: storage location 𝑎 is inferred to hold value 𝑒Ðthis is a global concept that transcends

transactions and function invocations, hence no dependencies
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− ⋃︀𝑖 ⋃︀ ∐︀𝐷̃︀: instruction 𝑖 is reachable under dependencies 𝐷 , where 𝐷 can be expanded into 𝑑𝐿 ;𝑑𝑇 ,
when local and transaction dependencies need to be treated separately. The dependency combi-
nation operator is applied pointwise: (𝑑1

𝐿 ;𝑑1
𝑇 )⊕ (𝑑2

𝐿 ;𝑑2
𝑇 ) ≙ 𝑑1

𝐿 ⊕𝑑2
𝐿 ;𝑑1

𝑇 ⊕𝑑𝑖
𝑇 .

Finally, the interaction between the main analysis and the symbolic solver, as well as the initial
setup of the analysis, are encapsulated in relations Oracle(v) and normalize(𝑒). Normalize
captures the symbolic simplifier/reducer of expressions. It is used every time a new expression is
formed (i.e., at a binary operator) to reduce it to its minimal form, hopefully a concrete value. Its
interface is kept very simple in the model by hiding some of the real work behind OracleÐwhich
we can do by making Oracle always łguessž the right values.

More specifically, Oracle hides behind it two major elements. The first is straightforward:
it supplies the initial (concrete and symbolic) values that the analysis will try, both as possible
arguments to functions and as initial contents of storage. For instance, we mentioned earlier that
the analysis will try to exercise the code with pre-defined constants, as well as constants found
in the program text, as well as symbolic values, such as ńownerż or ńuserż. In the formalism, this
aspect is captured by having Oracle return the appropriate value for a function argument (to
represent an external call). The second major role of Oracle is to invent values for arguments
that the solver uses to satisfy conditions. That is, Oracle(v) omnisciently guesses values that
should be given to external arguments so that a further expression 𝑒 has normalize(𝑒) ≙ true or
normalize(𝑒) ≙ false. These values are used to satisfy conditional jump conditions, and, thus,
explore more branches.

4.2 Analysis

The above modeling of Oracle yields an elegant specification of the analysis, since the interactions
with the symbolic solver now go through a simple interface. Figure 5 shows the analysis model
for the input language, as rules that will monotonically iterate until fixpoint. We next describe the
elements and insights in detail.

● Rule Next propagates dependencies (both local and transaction, treated as a single 𝐷) from
one instruction to the next, as long as there is no conditional control-flow transfer. (∗ denotes a
łdon’t carež value.)

● Rules JumpIf-T and JumpIf-F handle dependencies transfer over conditional control-flow. There
are two interesting aspects: First, for the next statement to be analyzed, the analysis must have
inferred the value true (resp. false) for the condition variable. This ensures the path-sensitive
nature of the analysis. Second, the rules showcase a pattern that also appears in most other rules:
the (data-flow) dependencies of the variable (v) used in the statement have to be compatible
with the (control-flow) dependencies of the statement itself. (Recall the convention that the
check is implicit in the rule antecedent if the result of the combine operation appears in the rule
consequent.)

● Rule BinaryOp shows the handling of expressions. Again, the dependencies of the variables
need to be combined with those of the statement. This is the only rule that constructs new

expressions, as 𝑒𝑡 ⊙ 𝑒𝑢 . It appeals to the symbolic solver, as discussed in the previous section.
Normalize minimizes the new expression (all the way down to a concrete value, if possible).
Importantly, it may also refuse to yield anything if expression size or complexity limits are
reached (as required to guarantee termination, per Section 3.3). In the full implementation, the
expression construction ł𝑒𝑡 ⊙𝑒𝑢ž is limited to a finite but rich universe of expressions. We bound
this universe by running several iterations of a pre-analysis (essentially the full symvalic analysis
but without dependencies), each time generating expression trees of up to size 4, simplifying
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(Next)
⋃︀𝑖 ⋃︀ ∐︀𝐷̃︀ 𝑖

next
ÐÐ→ 𝑗 ¬(𝑖 ∶ jumpif * ∗)

⋃︀ 𝑗 ⋃︀ ∐︀𝐷̃︀

(JumpIf-T)
⋃︀𝑖 ∶ jumpif v 𝑗 ⋃︀ ∐︀𝐷𝑖̃︀ v→ true ∐︀𝐷𝑣̃︀

⋃︀ 𝑗 ⋃︀ ∐︀𝐷𝑖 ⊕𝐷𝑣̃︀

(JumpIf-F)
⋃︀𝑖 ∶ jumpif v 𝑗 ⋃︀ ∐︀𝐷𝑖̃︀ v→ false ∐︀𝐷𝑣̃︀ 𝑖

next
ÐÐ→ 𝑘 𝑘 ≠ 𝑗

⋃︀𝑘 ⋃︀ ∐︀𝐷𝑖 ⊕𝐷𝑣̃︀

(BinaryOp)
⋃︀𝑖 ∶ v ≙ t⊙ u⋃︀ ∐︀𝐷𝑖̃︀ t→ 𝑒𝑡 ∐︀𝐷𝑡 ̃︀ u→ 𝑒𝑢 ∐︀𝐷𝑢̃︀

v→ normalize(𝑒𝑡 ⊙ 𝑒𝑢) ∐︀𝐷𝑖 ⊕𝐷𝑡 ⊕𝐷𝑢̃︀

(Phi)
⋃︀𝑖 ∶ v ≙ 𝜙(. . . u . . .)⋃︀ ∐︀𝐷𝑖̃︀ u→ 𝑒 ∐︀𝐷𝑢̃︀

v→ 𝑒 ∐︀𝐷𝑖 ⊕𝐷𝑢̃︀

(Load)
⋃︀𝑖 ∶ v ≙ JuK⋃︀ ∐︀𝑑𝑖

𝐿
;𝑑𝑖

𝑇 ̃︀ u→ 𝑒𝑢 ∐︀𝑑𝑢
𝐿
;𝑑𝑢

𝑇 ̃︀ J𝑒𝑢K⇒ 𝑒

v→ 𝑒 ∐︀𝑑𝑖
𝐿 ⊕𝑑𝑢

𝐿 ⊕ ⋃︁v→ 𝑒⨄︁;𝑑𝑖
𝑇 ⊕𝑑𝑢

𝑇 ̃︀

(Store)
⋃︀𝑖 ∶ JvK ≙ u⋃︀ ∐︀𝐷𝑖̃︀ v→ 𝑒𝑣 ∐︀𝐷𝑣̃︀ u→ 𝑒𝑢 ∐︀𝐷𝑢̃︀ Ok(𝐷𝑖 ⊕𝐷𝑣 ⊕𝐷𝑢)

J𝑒𝑣K⇒ 𝑒𝑢

(Call)
⋃︀𝑖 ∶ fun(u)⋃︀ ∐︀𝑑𝑖

𝐿
;𝑑𝑖

𝑇 ̃︀ ∀ 𝑗 : u𝑗 → 𝑒 𝑗 ∐︀𝑑 𝑗
𝐿
;𝑑 𝑗

𝑇 ̃︀,Ok(𝑑𝑖
𝐿 ⊕𝑑 𝑗

𝐿) Def(fun(a) ∶ 𝑙)

⋃︀𝑙 ⋃︀ ∐︀⊕
𝑘

⋃︁a𝑘 → 𝑒𝑘⨄︁;⊕
𝑘

𝑑𝑘
𝑇 ⊕𝑑𝑖

𝑇 ̃︀ ∀𝑘 ∶ a𝑘 → 𝑒𝑘 ∐︀⋃︁a𝑘 → 𝑒𝑘⨄︁;∅̃︀

(External-Args)
Def(fun(a) ∶ ∗) Oracle(a𝑘) ≙ 𝑒𝑘

a𝑘 → 𝑒𝑘 ∐︀⋃︁a𝑘 → 𝑒𝑘⨄︁;∅̃︀

(Sender)
Oracle(sender) ≙ 𝑒

sender→ 𝑒 ∐︀∅; ⋃︁sender→ 𝑒⨄︁̃︀

Fig. 5. Analysis rules. Suggestion: at first read, ignore dependencies (i.e., the parts in ∐︀. . .̃︀ and constraints
on 𝑑 and 𝐷 variables) to see just straightforward value-flow and the interaction with symbolic reasoning
(Normalize, Oracle).

them symbolically, and using the results as building blocks for expression trees of the next
iteration.

● Rule Phi propagates unchanged expression values that originate in different control-flow paths.
The rule has the conventional form for a may-analysis.

● Rule Load introduces new local dependencies, based on the variable that receives the value
based on storage. The consequent of the rule shows both the expected inference, v → 𝑒 , and
also that the same is inserted in the local dependencies. This may seem extraneous (though still
correct) at this point: why should the analysis derive that v may be 𝑒 under the condition that v
is 𝑒? However, this treatment ensures that any subsequent expressions that use the variable v

will carry the v→ 𝑒 local dependency.
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● Rule Store complements Load, leading to the establishment of the contents of a storage location.
● Rule Call is conceptually simpler than its daunting form may suggest: it checks that all actual

arguments at a function call have values and dependencies compatible with each other and with
reaching the statement. (The latter check is implicit, based on the big combine operations in the
consequent.) There are two conclusions in the consequent of the rule. The first states that the
dependencies for reaching the first instruction of the called function have to be the combination
of dependencies for all arguments. The second merely gives values to each individual formal
argument of the function, under near-trivial dependencies: the value of the argument itself. Just
as in the Load rule, earlier, this is done so that any further use of the argument will be dependent
on its value. The subtlety is that no such use can occur without also combining the instruction
dependencies. (That is, the variables in the second conclusion in the consequent of the rule will
also eventually receive all dependencies of the first conclusion.) As a result, the dependencies
inside a called function really keep the full values of all its arguments.

● Rules External-Args and Sender appeal to the Oracle relation, as described in Section 4.1.
The value the oracle supplies for sender is entered in the transactional dependencies.

The formalism, as captured in these rules, is in close correspondence with the full implementation
of the analysisÐeven the subtleties mentioned in the rule explanations (e.g., in when dependencies
get introduced) carry over from the actual implementation. Additionally, the formalism clearly illus-
trates the continuous appeal of the analysis to symbolic solving in the course of value propagation
through a fixpoint computation.

5 SPECIFICS AND IMPLEMENTATION

We next discuss the specifics of the current symvalic analysis setup. Although, not germane to the
precision of the analysis, the setup offers insights regarding its experimental behavior.

5.1 Technical Discussion

We implemented symbolic value-flow analysis for Ethereum smart contracts, over the IR exported
by the Gigahorse decompiler [Grech et al. 2019] and the memory modeling library [Lagouvardos
et al. 2020] built on top of it. 4 Smart contracts offer an excellent platform for sophisticated static
analysis due to their intensive security requirements, relatively small size, and modern emphasis
(with several prominent tools in the space).

Symvalic analysis combines a fixpoint computation (per the monotonic rules of Section 4.2)
and symbolic solving. Our current symvalic implementation uses a Datalog specification of the
analysis and a symbolic reasoner that is also largely implemented in Datalog, for close integration
with the static analysis fixpoint logic. The solver and analysis make minimal appeal to external,
specialized C++ functorsÐfor fast arithmetic, as well as data structures for efficient implementation
of dependencies (Section 3.2) and the łcombinež (⊕) operator.
Before describing the approach, it is worth considering alternatives. Our original intent, and

prototype, used an external solver (the Z3 [De Moura and Bjùrner 2008] SMT solver) for symbolic
reasoning. We found the approach less than desirable, given the number of appeals to the solver that
symvalic analysis needs to perform. This is hardly surprising, considering that realistic symvalic
analysis runs will appeal to the symbolic reasoner several tens-of-thousands of times (and up
to millions). For comparison, traditional symbolic execution systems collect path conditions (i.e.,
the conjunction of all conditions that need to be satisfied to reach a statement) and dispatch a
solver to satisfy them. As a result, such systems typically appeal to the solver a lot more rarely.

4Both tools were obtained from the public repository of the Gigahorse toolchain, available at https://github.com/nevillegrech/
gigahorse-toolchain

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://github.com/nevillegrech/gigahorse-toolchain
https://github.com/nevillegrech/gigahorse-toolchain


163:16 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

For instance, Maian [Nikolić et al. 2018] sets a 10sec timeout for each invocation of Z3. Symvalic
analysis performs thousands of inferences in this span of time.
Another tempting alternative is offered by the recent Formulog system [Bembenek et al. 2020].

Formulog combines Datalog and symbolic reasoning using Z3. However, the case studies that
Formulog shines in support the earlier assessment: Formulog symbolic execution [Bembenek et al.
2020, Sec 5.4] is competitive with modern leading systems, such as CBMC [Clarke et al. 2004] and
KLEE [Cadar et al. 2008]. Symbolic execution may cause a large number of appeals to the symbolic
solver, however these are still an order-of-magnitude fewer than symvalic analysis: symbolic
execution only has one path to maintain at any given time, whereas symvalic analysis maintains
as many as possible, using sets of values and dependencies. Furthermore, value-flow analysis in
Formulog [Bembenek et al. 2020, Sec 5.3] is around 7x slower than state-of-the-art fixpoint systems,
making this an unattractive substrate for symvalic analysis. Still, an evolved implementation that
will seamlessly combine Datalog rules and symbolic reasoning with high performance will be an
ideal platform for symvalic analysis in the future.

5.2 Solver

As shown earlier in Figure 2, the symbolic reasoner has two parts: a bottom-up and a top-down
reasoning component. The dual structure is a good fit for the implementation of the solver as a
Datalog module.

Bottom-up reasoning is the main symbolic workhorse: it produces and memoizes the results of
theorems applied to all symbolic expressions provided to the reasoner, as well as any others produced
in the course of proving theorems. This is a super-exponential process, therefore the expressions
supplied to the bottom-up reasoning component are typically of a small bounded size. (We currently
do 4 rounds of simplification, each over expression trees of size at most 5.) Essentially, bottom-up
reasoning proves all consequences of theorems (as long as they reduce the size of expressions)
for expressions up to a certain size. As seen in Figure 2, the analysis initializes all reasoning by
supplying the symbolic solver with expressions via predicates isExpr, isConst, isFreeVar, and
isBoundVar. It receives the products of bottom-up reasoning in the form of relations normalize

(highly analogous to Normalize in Section 4), equals, implies, and valueForVar. The last of these
offers suggestions to the (value-flow) analysis regarding extra values for free variables. The analysis
logic is free to accept these suggestions and propagate them wherever free variables arise (e.g.,
values of arguments to public functions). The analysis can also reject such suggestionsÐe.g., if it
has already covered all branches in a function with multiple values. (This two-step interaction of
the value-flow analysis and the solver was simplified/abstracted into the Oracle of Section 4.)

The top-down component is responsible for on-demand reasoning over expressions that are too
big for bottom-up reasoning. Whereas bottom-up reasoning produces all theorems (i.e., reasoning
consequences) for bounded expressions, top-down reasoning produces a bounded number of
consequences (i.e., the result of a bounded number of reasoning steps) over unbounded expressions.
The interface follows a request-response model, with the value-flow analysis sending the solver
equality and inequality satisfiability requests (eqRequest/ineqRequest) and getting back responses
(eqResponse/ineqResponse).

The reasoner implements a full collection of algebraic properties for arithmetic and boolean
logic. Given the richness of operators in the Ethereum VM language (which includes 256-bit
signed, unsigned, and modular arithmetic, several variants of shifts, etc.) we cannot make a full
argument regarding the completeness of the algebraic rules. However, in practice, we have yet to
find an expression that cannot be solved/simplified because of algebraic reasoning incompleteness.
(In contrast, the aforementioned size limitations of bottom-up reasoning and inference-depth
limitations of top-down reasoning are causes for incompleteness.)
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6 SETTING AND REAL-WORLD APPLICATION

We next discuss the real-world setup and impact of symvalic analysis, also indirectly motivating
and validating its design choices.

6.1 Ethereum Smart Contracts

The setting of Ethereum smart contracts is particularly interesting for software verification and
validation approaches. The primary reason is the potential impact: smart contractsmanagemonetary
assets, often in the many millions of dollars. The most common domain for smart contracts deployed
in the past two years has been Decentralized Finance (DeFi), i.e., autonomous protocols that
implement many of the functionalities of conventional finance (e.g., lending, exchanging, options
trading), often in innovative ways.
With this much real-world value, one might expect that cutting-edge research techniques on

program analysis and testing will have a significant practical impact on Ethereum smart contracts.
This has not been the case, however. Perez and Livshits [2021] conduct a thorough study of tens of
thousands of contracts reported vulnerable by six recent leading academic projects. They find that
under 2% of the contracts and only 0.27% of the funds held in them have actually been exploited. A
very small part of this impact is explainable by the tools having higher-than-reported false-positive
(i.e., imprecision) rates. Instead, the main reason for this striking result is a strong bias in the sample:
contracts that hold funds are very heavily scrutinized and much more likely to be false positives
in the analysis. Even analyses with 90% precision (i.e., true-positive) rates in the overall contract
population have extremely high false-positive rates in the subset of contracts that truly currently
manage funds.
Therefore, it should come as no surprise that program analysis tools are not considered very

valuable for Ethereum security analysis. A recent quote by a prominent security analyst in the
Ethereum space captures the prevailing view: łfor an experienced contract author, it’s never the

automated tooling that finds the bugs that kill themž [Konstantopoulos 2021].
Thus, the domain of Ethereum smart contracts represents a high practical but also intellectual

challenge for program analysis. The analysis should be extremely precise, so that the warnings
for high-value contracts are true positives that humans may have missed, and yet fairly complete,
since catching the easy łcertainž cases is likely to yield no warnings for contracts that truly manage
funds. Thankfully, there are elements of the domain that help. First and foremost, smart contracts
are isolated from each other and coded defensively. This introduces a high degree of modularity:
the contract can be analyzed mostly in isolation from others. Nearly anything that comes from
the outside world is untrusted, unless either the data or the sender are vetted through specific
mechanisms. Second, the contracts are of modest size: a deployed smart contract is at most of
24KB in binary size. This corresponds to at most a few thousand lines of code. The largest of the
SmartBugs benchmarks that we will consider in our evaluation is under 2.5KLoC in Solidity source.
Common sizes of łlargež smart contracts are under 1KLoC, with another 1KLoC inherited or called
in libraries.
The small size and (relative) modularity of smart contracts means that we can apply analysis

techniques that are more ambitious (in terms of precision) than in a general-purpose language
setting. Past work has used ambitious program reasoning techniques [Albert et al. 2020c; Grossman
et al. 2017; Permenev et al. 2020] (indeed, even full program verification using proof assistants and
off-line logics has been employed [Hildenbrandt et al. 2018]).

The design choice of high-precision is reflected in the mechanism of dependencies and the general
path sensitivity of the symvalic analysis. In a general-purpose language setting (e.g., analyzing Java,
C#, C++, etc.) path-sensitive analyses are rare and virtually never combined with whole-program
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reasoning (i.e., a modeling of the global heap, such as our J𝑎K ⇒ 𝑒 łstorage location contentsž
relation). The reason is scalability: whole-program analysis of globally shared structures can scale to
applications of typical real-world sizes for general-purpose languages (in the hundreds of thousands
of LoC) only when the analysis sacrifices path sensitivity, and often even flow sensitivity, context
sensitivity, or field sensitivity.

6.2 Practical Impact

Symvalic analysis has been applied to all new contracts deployed on the Ethereum blockchain
since the beginning of 2021. In the course of these months, the analysis has flagged numerous
exploitable vulnerabilities [Dedaub 2021a,b,c,d; Primitive Finance 2021]. We have made several
vulnerability disclosures, some of which resulted in major rescue efforts [Dedaub 2021a; Michales,
Jonah 2021]. (The vulnerable services include 2 of the top-15 financial services on Ethereum, per
current defipulse.com rankings.)

The total amount of vulnerable funds safeguarded is in the many millions, and potentially tens
of millions, of dollars. The exact figure would have been readily computable for a black-hat hack,
but is not computable for vulnerability disclosures because a) it greatly varies by timeÐe.g., in one
case an extra $900K became vulnerable two months after initial disclosure and rescue, because
a customer exchanged some funds; b) in many cases there was no rescue operation because the
vulnerability could be mitigated without a direct attack to vulnerable funds. In three cases, an attack
(i.e., a white-hat hack, in collaboration with the vulnerable service) was necessary in order to rescue
the vulnerable funds. The total funds actually rescued during these white-hat hacks amount to $6M.
We have received 6 separate bug bounties from these vulnerability disclosures, for a total of $350K.
Our vulnerability disclosures have been featured six times in łWeek of Ethereum NewsžÐthe most
popular weekly digest of the Ethereum spaceÐin the 3 months since the beginning of the year.
(The newsletter typically contains 1-5 items under the łsecurityž heading every week.)

From a program analysis standpoint, all detected vulnerabilities have the same general structure:
they correspond to warnings of the form łan untrusted caller 𝐶 can reach argument X of a sensitive
operation and supply parameter 𝑌 that is taintedž or łan untrusted caller can reach a sensitive
operation (at all)ž. That is, the vulnerability warnings typically query the main relations produced
by the analysis: X → 𝑌 ∐︀∗; ⋃︁sender → 𝐶⨄︁̃︀, as well as ⋃︀𝑖 ⋃︀ ∐︀∗; ⋃︁sender → 𝐶⨄︁̃︀. The untrusted caller
𝐶 corresponds to symbolic value ńunprivileged-userż, as seen in earlier examples, stored in the
transactional dependencies of the symvalic analysis. The tainted parameter value 𝑌 is typically
the symbolic value ńuser-unique-valueż, mentioned earlier, which designates that the value is
completely unconstrained. The exact nature of the sensitive operation with argument 𝑋 varies by
vulnerability. For instance:

● transferFrom [Dedaub 2021a]: the contract is authorized to manipulate the funds of some
accounts, and its code allows a direct transfer of funds from a tainted source to a tainted sink.

● loan [Dedaub 2021a]: similar to the above, the contract is authorized to manipulate funds, but
the manipulation is limited to take place with specific kinds of funds, after a loan is received.
Both the reachability of the code by an untrusted caller and the taintedness of the funds sink
are essential.

● swap [Dedaub 2021c]: an exchange of funds from one token to another, (taking place after a
loan and a liquidation of łsharesž). The taintedness of the token being swapped and of the
amount swapped are essential to the attack.

● flashswap [Primitive Finance 2021]: code executed upon an external service’s granting of a
loan does not check that the loan parameters were as requested: the attacker can invoke the
callback with tainted loan parameters (e.g., tainted token).
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● manipulated swap [Dedaub 2021d]: the contract periodically converts its profits, and anyone
can invoke this functionality. The attack is based on the reachability of this code by untrusted
callers, and not on taintedness. The attacker calls the functionality exchanging the funds
after having manipulated the online prices of the exchange service doing the conversion.

As can be discerned from the above descriptions, the attack point is buried deep in the code, under
several complex conditions. One can, therefore, see why the precision (i.e., the path sensitivity) and
completeness of symvalic analysis is important for the detection of the vulnerability. As we write in
a vulnerability report [Dedaub 2021a]: łWhat made our symbolic-value flow analysis useful was not
that it captured this instance but that it avoided warning about others that were not vulnerable. The
analysis gave us just 27 warnings about such vulnerabilities out of the 40 thousand most-recently
deployed contracts!ž

7 CONTROLLED EVALUATION

Although symvalic analysis is continuously tested in the real world, this does not constitute a
systematic evaluation, capable of demonstrating coverage, precision, and recall metrics, also in
comparison to other tools. The symvalic analysis design is expected to offer both precision, and
greater completeness compared to past static or hybrid analyses (or, alternatively, much greater
completeness than a pure symbolic execution approach).

We next evaluate symvalic analysis experimentally in a controlled environment, against some of
the best-known tools in the space of Ethereum smart contracts. To obtain ground truth for this
systematic study, we consider the benchmarks of the recent SmartBugs work by Durieux et al.
[2020]. SmartBugs offers a curated set of contracts, labeled with known vulnerabilities, and presents
an empirical assessment of several security tools for Ethereum. The Mythril tool [Honig 2020], by
Consensys, is the clear winner in the SmartBugs study, in terms of ability to detect vulnerabilities
(with low rates of flagging un-tagged programs for vulnerabilities), and performs very well in terms
of scalability. Furthermore, Mythril is a good comparable for symvalic analysis, since it is also a
hybrid tool: it performs both symbolic execution and static analysis, and freely chooses between
the approaches depending on the vulnerabilities it tries to detect.
Since symvalic analysis is close in spirit to symbolic execution, we also compare against the

Manticore tool [Mossberg et al. 2019], by Trail-of-Bits. Manticore is a symbolic execution tool and
one of the best-known industrial tools (together with Mythril) in the Ethereum space.
There are tens of security analysis tools in the Ethereum space. The SmartBugs study has

already considered some of the most visible ones (including HoneyBadger [Torres et al. 2019],
Maian [Nikolić et al. 2018], Osiris [Torres et al. 2018], Oyente [Luu et al. 2016], Securify [Tsankov
et al. 2018], Slither [Feist et al. 2019], and Smartcheck [Tikhomirov et al. 2018]. Mythril outperforms
all by a significant margin [Durieux et al. 2020], therefore, barring major recent upgrades, our
conclusions (comparing with Mythril) should apply.
We łnormalizež the SmartBugs benchmarks in the following ways:

● We eliminate or supplement benchmarks that exhibit a vulnerability but do not use the
manipulated result, or otherwise prevent the vulnerability from really exhibiting itself. For
instance, there were multiple benchmarks in which the vulnerable code was dead, removed
during compilation by the Solidity compiler. These benchmarks are invalid for an automated
evaluation of tools, so we added minimal code to ensure the vulnerability is real.
● We split and clone benchmarks so that each benchmark program exhibits vulnerabilities of
exactly one type, removing non-labeled vulnerabilities present in the original SmartBugs
benchmark. In this way, any extra (i.e., non-labeled) vulnerabilities are guaranteed, to be false
positives. After this normalization, we remove contracts that exhibit the same vulnerability
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in identical code patterns, so that each benchmark captures a different aspect of vulnerability
detection. These are good properties that were not maintained in the original form of the
programs.

Furthermore, since the SmartBugs benchmarks are unrealistically biased towards true vulnerable
contracts (which are rare in practice), we complement our experiments with a second dataset,
intending to demonstrate precision (i.e., low false-positive rates). This dataset consists of contracts
that are extremely unlikely to have serious vulnerabilities. Specifically, these are all the contracts (a
total of 166 unique bytecodes) that handle the 10,000 highest-value (by ETH balance) Ethereum
blockchain accounts, as of early 2021.5 The least valuable of these contracts manages some $350K,
while the most valuable ones manage hundreds of millions.

The benchmark collection from our study is available as a public repository.6 We believe it
constitutes an excellent evaluation suite for future studies, although the dramatic speed of evolution
of real-world smart contracts will require continuous update for relevance.
The results of the controlled evaluation can be obtained using the publicly-available peer-

reviewed version of the artifact [Smaragdakis et al. 2021] accompanying the paper.

7.1 Setup

We use the Souffle Datalog engine (v.2.0.2) on a machine with two Intel(R) Xeon(R) Gold 6136 CPUs
3.00GHz. (Each CPU has 12 cores, or 24 hardware threads. The machine has ample RAM for the
tasks we run, at 768GB. We start up to 40 concurrent jobs and none of our experiments should
show significant interference between jobs.) For all tools, timeout is set to 20mins (1200sec). This is
a highly generous time allowance, intended to reveal the full ability of the tools for bug detection,
regardless of their time costs.

We implemented symvalic clients for the top-5 (by number of vulnerable contracts) vulnerability
categories from the SmartBugs repository [Various 2020].7 The clients build atop the output relations
of Figure 4, such as łvariable may hold value under dependenciesž.

7.2 Ability to Detect Bugs

The normalized SmartBugs corpus contains 109 contracts with labeled vulnerabilities. We analyze
all contracts in bytecode form, however Manticore is primarily usable with source code input,8

therefore we use source code for it.
Table 1 shows the recall (i.e., percentage of true vulnerabilities identified) of all tools on the

curated dataset of 109 contracts. We evaluate symvalic analysis pessimally: First, we include the 16
contracts with vulnerabilities that symvalic analysis does not support, under the łOther*ž category.
(The numbers of these vulnerabilities are counted just like the rest, when higher is better, and
not counted when lower is better, penalizing symvalic analysis for the omission of these clients.)
Second, we include benchmarks even if we do not agree with them. For instance, in the Access

5Most high-value accounts are łwalletsž, i.e., they don’t have code behind them. However, roughly 1-in-10 are handled by
smart contracts. We deduplicate their code to get the 166 unique bytecodes to analyze.
6https://github.com/nevillegrech/gigahorse-benchmarks
7We did not expend effort to develop clients for the last 5 of the vulnerabilities in the SmartBugs repository because a) these
would be numerically insignificant for the experiment, accounting only for 16 out of 109 warnings in the benchmarks; b)
we do not consider these clients to be promising for finding bugs in real-world contracts. E.g., the top-3 such vulnerabilities
are łbad randomnessž, łtime manipulationž, and łfront runningž. These can be caught with specific code pattern-matching
in simplistic benchmarks, but these well-known patterns never appear in real contracts any more. The full form of the
vulnerability, however, is semantic and cannot be discerned reliably by static analysis without deep understanding of a
program’s semantics, i.e., interaction with the programmer and programmer-supplied invariants.
8We expended much effort to run Manticore on bytecode input and got results that were significantly worse. In all
experiments, we tuned Manticore according to instructions supplied by its authors, in direct communication.
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Control category, our assessment is that symvalic analysis finds all true vulnerabilities, although
the tables lists it as missing 6.9

Table 1. Recall: Percentage of true vulnerabilities detected by each tool. Also statement coverage, timeout-
s/errors, average runtimes. Fuller bars are better.

Category Manticore Mythril Symvalic

Access Control 3⇑16 19% 11⇑16 69% 10⇑16 63%
Arithmetic Error 10⇑13 77% 11⇑13 85% 11⇑13 85%
Denial of Service 0⇑6 0% 0⇑6 0% 4⇑6 67%
Reentrancy 8⇑23 35% 19⇑23 83% 21⇑23 91%
Unchecked Low-Level Calls 3⇑35 9% 14⇑35 40% 35⇑35 100%
Other* 3⇑16 19% 5⇑16 31% 0⇑16 0%

Total 27⇑109 25% 60⇑109 55% 81⇑109 74%

Avg. Coverage 74% 86% 96%
Timeouts+Errors 54 (50%) 10 (9.17%) 0 (0%)
Avg. Runtime 231.1 seconds 107.3 seconds 2.9 seconds

Notably, Manticore times out for half the contracts and has an average running time of 185sec.
(For symvalic analysis, the maximum running time over any of the benchmarks is 50sec.)

Qualitatively the tools justify their architectural characteristics. Manticore is the closest to a pure
symbolic execution tool in the set, and exhibits low completeness: both the statement coverage
metric and its percentage of vulnerabilities detected lag behind other toolsÐa result also observed
by Durieux et al. [2020].

Mythril and the symvalic analysis both detect a significant number of the vulnerabilities. Symvalic
analysis exhibits very high (original bytecode) statement coverage (96% vs. Mythril’s 86% and
Manticore’s 74% but with numerous timeouts, for the more complex contracts). In total, symvalic
analysis detects 80 of the 109 vulnerabilities, whereas Mythril detects 60 andManticore 27 (including
the Other* vulnerabilities, which symvalic analysis does not support). Additionally, the average
running time of symvalic analysis is much lower than that of other tools (e.g., 2.9sec vs. 107.3sec
for Mythril).

Recall on its own means little. The message of symvalic analysis is that top-of-class recall can be
achieved while combined with unsurpassed precision. Table 2 shows the percentage of labeled (in
the curated dataset) vulnerabilities among the total flagged by every tool.
As can be seen in the table, Manticore is fully precise regarding its 24 labeled vulnerabilities.

(This is commensurate with Manticore’s nature as a symbolic execution engine, exhibiting high
precision, but one should also keep in mind its 50% timeout rate, which shows that the results only
apply to the simplest contracts.) Mythril issues 104 reports to flag its 55 labeled contracts, while it
times out on 10 out of the 109 contracts. Symvalic analysis reports just 95 vulnerabilities, of which
80 are true positives.

One may ask, what are the 15 false positives of symvalic analysis? Is the dependencies mechanism
not sufficient to maintain precision relative to actual program execution? By inspection, we find that
most of these false positives are not due to imprecise modeling of execution, but due to modeling

9Two of these are for an outdated vulnerability (checks over tx.origin instead of msg.sender, which is hardly indicative
of a problem in modern contracts), two are over patterns that modern Solidity versions disallow (so they could only arise
for old code, or for assembly code that explicitly implements a security hole), and two are calling a hard-coded external
contract with caller-influenced values (a practice that is common and overwhelmingly not indicating a vulnerability).
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Table 2. Precision: Percentage of vulnerabilities (per category) reported by each tool that truly have the
corresponding vulnerability. The “Total” for Mythril and Manticore does not include the “Other*” category,
so that the tools do not look worse merely on vulnerabilities that symvalic analysis does not support. Fuller
bars are better.

Category Manticore Mythril Symvalic

Access Control 3⇑3 100% 11⇑19 58% 10⇑13 77%
Arithmetic Error 10⇑10 100% 11⇑18 61% 11⇑14 79%
Denial of Service 0/0 - 0⇑23 0% 4⇑10 40%
Reentrancy 8⇑8 100% 19⇑30 63% 21⇑23 91%
Unchecked Low-Level Calls 3⇑3 100% 14⇑14 100% 35⇑39 90%
Other* 3⇑3 100% 5⇑13 38% 0/0 -

Total 24⇑24 100% 55⇑104 53% 81⇑99 82%

of the external environment. For instance, the analysis cannot easily make assumptions about what
values may be returned by an external call. For completely unknown calls, it will assume that the
call can return anything. However, the call may have a specific protocolÐe.g., only return a success
flag for the current contract. Thus the analysis will model behaviors that will not be realizable
in practice. (This can be remedied with complete models of the environment, or by taking into
account dynamic behaviors in past transactions. We do not supply such information to any of the
evaluated tools, nor is it clear that they can easily accept it. However, this is clearly a promising
future direction.)

7.3 (Likely) False Warnings

The curated dataset of the SmartBugs study gives an indication as to the ability of an analysis to
find well-recognized vulnerabilities. However, real contracts deployed on the blockchain are a)
more complex; b) much less likely to be vulnerable (and when they are, they are much less likely to
hold Ether [Perez and Livshits 2021]).
Therefore we perform a second experiment with fully-realistic, ultra-high-value contracts: the

166 code bases (some, such as multisig wallets, instantiated tens or hundreds of times) that handle
the 10,000 highest-value (by ETH balance) Ethereum blockchain accounts. Although there is no
full ground truth on vulnerabilities available for these contracts, a better analysis is expected to
a) scale well for them; b) yield few warnings in categories that have direct financial impact (i.e.,
Reentrancy, Access Control, or Arithmetic Error) since true vulnerabilities in these categories are
extremely unlikely to exist.
Table 3 shows how the tools fare over the high-value contracts. Manticore could only apply to

the 90 of the 102 contracts that have source code available, due to issues regarding their compilation.
In these, it suffered 92% timeouts. In the three categories where warnings are almost certainly false

positives (Reentrancy, Access Control, and Arithmetic Error), symvalic analysis issues just a small
fraction of the warnings of Mythril. Overall, symvalic analysis issues just 61 vulnerability reports
(13 in the łfalse positivež categories) over the 146 contracts that it analyzed, timing out for 20
contracts. The analysis exhibits high statement coverage (given the difficulty of the contracts) at
83%.
Mythril issues 81 reports (reports for łOther*ž not included) and fails to complete for 45 of the

166 contracts. However, Mythril still issues reports for contracts that time out. We list them in a
separate column because they help illustrate that timeouts are not random: both the percentage of
flagged contracts and the coverage grow once contracts that timeout are included, despite them
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Table 3. Coverage, total timeouts/errors, average runtimes, and reports per vulnerability class for high-value
contracts: all unique contract bytecodes that manage the top-10K Ethereum accounts. The denominator of
fractions is the number of contracts analyzed by the given tool/configuration. The numerator may be larger,
since multiple reports are possible for the same contract in this dataset. We exclude the “Other*” category
from the Total for Manticore and Mythril, to avoid penalizing them for warnings that symvalic does not
support. We include a separate column with Mythril warnings for contracts that were partially analyzed (i.e.,
timed out, but produced some results). Emptier bars are better, except for the łunchecked low-level
callsž and łdenial of servicež categories (which include mostly/many true positives, respectively).

Category Manticore Mythril Mythril w. timeouts Symvalic

Access Control 0⇑7 0% 8⇑121 7% 14⇑163 9% 8⇑148 5%
Arithmetic Error 0⇑7 0% 54⇑121 45% 74⇑163 45% 3⇑148 2%
Denial of Service 0⇑7 0% 6⇑121 5% 23⇑163 14% 13⇑148 9%
Reentrancy 0⇑7 0% 12⇑121 10% 34⇑163 21% 2⇑148 1%
Unchecked Low-Level Calls 0⇑7 0% 1⇑121 1% 1⇑163 1% 37⇑148 25%
Other* 4⇑7 57% 22⇑121 18% 42⇑163 26% 0⇑148 0%

Total 4⇑7 57% 81⇑121 67% 146⇑163 90% 61⇑148 41%

Avg. Coverage 57% 47% 49% 83%
Timeouts+Errors 83⇑90 92% 45⇑166 27% 3⇑166 2% 18⇑166 11%
Avg. Runtime 215.5 seconds 186.73 seconds 475.74 seconds 39.2 seconds

only being analyzed partially. This indicates that complex contracts lead both to more reports and
to timeouts, and, in fact, timeouts hide extra Mythril reports. With partially-analyzed contracts
included, Mythril issues 146 reports over just 163 contractsÐ122 of them in the three łfalse positivež
categories. This is precisely the performance of past tools (issuing too many invalid warnings for
the security inspector to inspect effectively) that Symvalic analysis aims to address. Furthermore,
Mythril issues these reports while only covering 49% of the contracts’ statements.

Conversely, the łunchecked low-level callsž category indeed contains several true positives, even
in deployed, high-value contracts. The analysis of all tools (as well as the labels of the curated
dataset) define the vulnerability as lack of a check of a return value, regardless of the further
implications this omission may have. Indeed, the vulnerability should be seen as more of a łbad
smellž. To some extent, the same is true of the łdenial of servicež category: it may be true that,
e.g., one of the signers of a multi-sig wallet can overflow a storage array, rendering the contract
unusable. However, this may not be part of the valid threat model for the contract. The vulnerability
should still be considered correctly reported, even though the contract is not third-party-exploitable.
Symvalic analysis issues many warnings in these categories and a brief sampling reveals that most
are true positives.

Summary. The experiments with the curated (SmartBugs) and high-value datasets confirm and
quantify what has been our informal experience with symvalic analysis: it is an analysis that
offers scalable, precise modeling combined with much greater program coverage than other precise
(path-sensitive) static techniques, such as symbolic execution.

8 RELATED WORK

We have referred to directly related work extensively throughout the paper, therefore we next only
discuss conceptual relatives that are not otherwise directly comparable.
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General Program Analysis and Verification. Relational analysis techniques have been successfully
applied in recent years, to tackle the problem of JavaScript static analysis, where precision is
critical to getting a useful analysis. Value partitioning [Nielsen and Mùller 2020], is an efficient trace
partitioning [Rival and Mauborgne 2007] variant, where the analysis does not attempt to refine
abstract states, but instead, abstract values. This apporach manages to circumvent the expensive
abstract state partitioning [Ko et al. 2017] or additional backwards analysis [Stein et al. 2019] that
previous apporaches required, while maintaining precision.
Symbolic execution has seen numerous variations that offer a different balance of scalability,

completeness, and precision. Compositional symbolic execution [Anand et al. 2008; Godefroid 2007]
has attempted to address scalability issues by use of summaries. Steering techniques [Li et al. 2013;
Park et al. 2012] attempt to achieve higher coverage or depth, e.g., by prioritizing paths that are yet
unexplored. Symvalic analysis has similar goals, but its coverage is only a small part of the story:
as a static analysis, it explores many values at once and coverage is only incidental. At the same
time, it may suffer from higher imprecision than symbolic execution techniques, since precision is
limited by its current dependencies scheme.
Accordingly, symvalic analysis can be viewed as an attempt to address the state explosion

problem. The model checking literature contains several approaches with similar goals, ranging
from compositional assume-guarantee reasoning [Abadi and Lamport 1993] to symmetry reduc-
tion [Emerson and Sistla 1996; Norris Ip and Dill 1993], to partial order reduction [Flanagan and
Godefroid 2005]. Symvalic analysis uses a very different scheme, due to both symbolic reasoning
and its controlled sacrifice of precision. Conceptually, the combination of abstract interpretation
and model checking (e.g., [Clarke et al. 1994]) has a similar flavor, but the actual mechanisms differ
substantially.

Whitebox [Chipounov et al. 2011; Godefroid et al. 2008, 2012] and (later) greybox [Böhme et al.
2016; Various 2017; Wüstholz and Christakis 2020a,b] fuzzing are approaches that use insights
similar to those of symvalic analysis, in an effort to achieve coverage of a program under test,
especially when the program makes use of very low level library code that is externally modelled.
These approaches work by łfuzzingž an input, following the control flow of a program for concrete
values, yet also potentially using constraint solvers to modify the input to follow alternative control
flow. In the space of smart contracts, where the program is fully modeled, and bugs manifest
themselves in several transactions, symvalic analysis can scale better and cover more program
behaviors, since it is fundamentally a static analysis, overapproximating dynamic conditions and
collapsing many paths.
Symvalic analysis is rather unconventional among analysis techniques, mainly in the ways

described earlier: it uses symbolic expressions inside a full static analysis (not dynamic-symbolic
execution), without delegating the solution of large expressions to an external constraint solver.
There have been other combinations of symbolic expressions and static analyses, especially for
custom analysis clientsÐe.g., Dudina and Belevantsev [2017] employ a symbolic static analysis for
buffer overflow detection. In contrast, symvalic analysis is client-agnostic: symbolic expressions
are used as regular values for any variable in the program text, without targeting specific kinds of
expressions or specific program features. Furthermore, the mechanism of dependencies (Section 3.2)
is key in the symvalic design, for purposes of precision.
There are certainly many more points in the static analysis design space and some can be

compared for reference. SPLlift [Bodden et al. 2013] shows a modular analysis for software product
lines. This is almost at the opposite end of the spectrum from symvalic analysis: a very scalable
analysis, but much less precise. The SPLlift analysis is explicitly based on the IFDS framework,
which means that it summarizes at the procedure boundary, thus losing precision to gain scalability.
It is interesting to consider whether symvalic analysis could apply to large-scale software product
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lines. This direction would certainly require significant work for a fruitful approach. For instance,
symvalic analysis would likely apply to each Java file separately with the dependencies between
different files modeled rather loosely (e.g., perhaps a single predicate to capture the configuration
of the product line). Padhye and Khedker [2013] describe an analysis that achieves significant
precision (flow- and context sensitivity) in a fairly general analysis setting. This may be a promising
candidate for future combinations with symvalic analysis ideas, especially the use of dependencies
as a data-flow-value context.

Program Analysis for Ethereum Smart Contracts. The small size and high value of Ethereum smart
contracts has made them a suitable target for applying a variety of program analysis techniques,
resulting in a plethora of academic [Brent et al. 2020; Grech et al. 2018; Kolluri et al. 2019; Lagou-
vardos et al. 2020; Luu et al. 2016; Nguyen et al. 2020; Nikolić et al. 2018; Torres et al. 2019; Tsankov
et al. 2018] and industrial [Feist et al. 2019; Grieco et al. 2020; Honig 2020; Mossberg et al. 2019;
The Certora team 2017] tools emerging. While most smart contract tools focus on vulnerability
detection, past work has also focused on empirically identifying optimization opportunities [Chen
et al. 2020], gas cost estimation [Albert et al. 2020a] using recurrence-relation theories or even
superoptimization [Albert et al. 2020b] using SMT.
Tools [Hajdu and Jovanović 2020; Kolluri et al. 2019; Krupp and Rossow 2018; Luu et al. 2016;

Mossberg et al. 2019; Nikolić et al. 2018] applying symbolic execution techniques have been very
popular due to the precision of their reported warnings. (And also, a cynic might remark, their ease
of implementation on a platform where the source language changes constantly and the low-level
IR is extremely hard to analyze.) In Section 7 we evaluated our symvalic analysis against Mythril
[Honig 2020] and Manticore [Mossberg et al. 2019], two state-of-the-art tools that employ symbolic
execution techniques, with symvalic analysis having higher warning precision and statement
coverage with vulnerability completeness comparable or superior to that of the best competitor.

Additionally, approaches [Albert et al. 2018; Brent et al. 2020, 2018; Feist et al. 2019; Grech et al.
2018; Lagouvardos et al. 2020; Tsankov et al. 2018] based on static analysis have seen success due
to their high completeness and scalability. Even though conventional static analysis tools [Brent
et al. 2020] have achieved high precision by tuning the analysis to common programming patterns
found in Ethereum smart contracts, as we discussed in Section 2, symvalic analysis offers a more
precise analysis while being agnostic to these specific program patterns.

Fuzzing-based tools [He et al. 2019; Jiang et al. 2018; Nguyen et al. 2020; Wüstholz and Christakis
2020a,b] have also been successful in precisely reporting smart contract vulnerabilities. Notably,
the recently presented Harvey fuzzer [Wüstholz and Christakis 2020b] combines static analysis
with fuzzing by using static analysis to guide a greybox fuzzer.

9 CONCLUSIONS

We presented symvalic analysis: a value-flow static analysis where the values can be symbolic
expressions. The analysis achieves a rare balance between scalability, precision, and completenessÐ
squeezed between the state explosion problem and imprecise approximation. For the setting of
Ethereum smart contracts, the analysis yields high-value vulnerability warnings, which have
already resulted in significant real-world impact, rescuing several millions in vulnerable funds.
We view symvalic analysis as an approach that holds promise for taming the state explosion

problem in the general software verification and validation setting. Traditional execution-based ap-
proaches (including concrete execution, testing, dynamic-symbolic execution, and model checking)
are horizontal: they keep an extremely detailed state about all variables/memory locations at every
single point of modeling a program’s behavior. This results in the precision of the modeling but
also in difficulties in scalability and behavior completeness. In contrast, value-flow static analysis
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techniques are vertical: they keep a large set of values per-variable (or other program entity), but
the values are rarely correlatedÐresulting in completeness but precision loss. Symbolic value-flow
analysis keeps some of the horizontal and some of the vertical elements. It attempts to keep much
of the completeness of static analysis, yet make it precise by a) employing concrete values and
symbolic constraint solutions when necessary to satisfy program path conditions; b) connecting
values together via the mechanism of dependencies. We hope that the technique will find further
future adoption, helped by strong evidence of impact in the domain of Ethereum smart contracts.

ACKNOWLEDGMENTS

We gratefully acknowledge funding by the Hellenic Foundation for Research and Innovation (HFRI
project DEAN-BLOCK).

REFERENCES

Martín Abadi and Leslie Lamport. 1993. Composing Specifications. ACM Trans. Program. Lang. Syst. 15, 1 (Jan. 1993), 73ś132.
https://doi.org/10.1145/151646.151649

Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Román-Díez, and Albert Rubio. 2020a. GASOL: gas analysis and
optimization for ethereum smart contracts. In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 118ś125.
Elvira Albert, Pablo Gordillo, Benjamin Livshits, Albert Rubio, and Ilya Sergey. 2018. EthIR: A Framework for High-Level

Analysis of Ethereum Bytecode. In Automated Technology for Verification and Analysis (ATVA). Springer International
Publishing, 513ś520.

Elvira Albert, Pablo Gordillo, Albert Rubio, and Maria A. Schett. 2020b. Synthesis of Super-Optimized Smart Contracts Using
Max-SMT. In Computer Aided Verification, Shuvendu K. Lahiri and Chao Wang (Eds.). Springer International Publishing,
Cham, 177ś200.

Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. 2020c. Taming
Callbacks for Smart Contract Modularity. Proc. ACM Program. Lang. 4, OOPSLA, Article 209 (Nov. 2020), 30 pages.
https://doi.org/10.1145/3428277

Saswat Anand, Patrice Godefroid, and Nikolai Tillmann. 2008. Demand-Driven Compositional Symbolic Execution. In Tools

and Algorithms for the Construction and Analysis of Systems, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 367ś381.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi. 2018. A Survey of Symbolic
Execution Techniques. ACM Comput. Surv. 51, 3, Article 50 (May 2018), 39 pages. https://doi.org/10.1145/3182657

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-Based Static Analysis (Extended
Version). CoRR abs/2009.08361 (2020). arXiv:2009.08361 https://arxiv.org/abs/2009.08361

Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba, and Mira Mezini. 2013. SPL<sup>LIFT</sup>:
Statically Analyzing Software Product Lines in Minutes Instead of Years. In Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation (Seattle, Washington, USA) (PLDI ’13). Association for
Computing Machinery, New York, NY, USA, 355ś364. https://doi.org/10.1145/2491956.2491976

Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-Based Greybox Fuzzing as Markov Chain. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS ’16).
Association for Computing Machinery, New York, NY, USA, 1032ś1043. https://doi.org/10.1145/2976749.2978428

Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: A Smart Contract
Security Analyzer for Composite Vulnerabilities. In Proceedings of the 41st ACM SIGPLAN Conference on Programming

Language Design and Implementation (London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 454ś469. https://doi.org/10.1145/3385412.3385990

Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent Gramoli, Ralph Holz, and Bernhard Scholz.
2018. Vandal: A Scalable Security Analysis Framework for Smart Contracts. CoRR abs/1802.08660 (2018). arXiv:1809.03981
https://arxiv.org/abs/1809.03981

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. 2008. KLEE: Unassisted and Automatic Generation of High-Coverage
Tests for Complex Systems Programs. In Proc. 8th USENIX Symposium on Operating Systems Design and Implementation

(OSDI). USENIX, 209ś224.
T. Chen, Y. Feng, Z. Li, H. Zhou, X. Luo, X. Li, X. Xiao, J. Chen, and X. Zhang. 2020. GasChecker: Scalable Analysis

for Discovering Gas-Inefficient Smart Contracts. IEEE Transactions on Emerging Topics in Computing (2020), 1ś1.
https://doi.org/10.1109/TETC.2020.2979019

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/151646.151649
https://doi.org/10.1145/3428277
https://doi.org/10.1145/3182657
https://arxiv.org/abs/2009.08361
https://arxiv.org/abs/2009.08361
https://doi.org/10.1145/2491956.2491976
https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/3385412.3385990
https://arxiv.org/abs/1809.03981
https://arxiv.org/abs/1809.03981
https://doi.org/10.1109/TETC.2020.2979019


Symbolic Value-Flow Static Analysis of Ethereum Smart Contracts 163:27

Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea. 2011. S2E: A Platform for in-Vivo Multi-Path Analysis of
Software Systems. In Proceedings of the Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, Vol. 46. Association for Computing Machinery, New York, NY, USA, 265ś278. https:
//doi.org/10.1145/1961296.1950396

E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic Verification of Finite-State Concurrent Systems Using Temporal
Logic Specifications. ACM Trans. Program. Lang. Syst. 8, 2 (April 1986), 244ś263. https://doi.org/10.1145/5397.5399

Edmund M. Clarke, Orna Grumberg, and David E. Long. 1994. Model Checking and Abstraction. ACM Trans. Program. Lang.

Syst. 16, 5 (Sept. 1994), 1512ś1542. https://doi.org/10.1145/186025.186051
Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. 2004. A Tool for Checking ANSI-C Programs. In Tools and

Algorithms for the Construction and Analysis of Systems, 10th International Conference, TACAS 2004, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,

Proceedings (Lecture Notes in Computer Science, Vol. 2988), Kurt Jensen and Andreas Podelski (Eds.). Springer, 168ś176.
https://doi.org/10.1007/978-3-540-24730-2_15

Mike Czech, Marie-Christine Jakobs, and Heike Wehrheim. 2016. Just test what you cannot verify!. In Software Engineering

2016, Jens Knoop and Uwe Zdun (Eds.). Gesellschaft für Informatik e.V., Bonn, 17ś18.
Leonardo De Moura and Nikolaj Bjùrner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of

Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337ś340.

Dedaub. 2021a. Ethereum Pawn Stars: ’$5.7M in hard assets? Best I can do is $2.3M’. https://medium.com/dedaub/ethereum-
pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e

Dedaub. 2021b. Killing a Bad (Arbitrage) Bot ... to Save its Owners. https://medium.com/dedaub/killing-a-bad-arbitrage-
bot-f29e7e808c7d

Dedaub. 2021c. Look Ma’, no source! Hacking a DeFi Service with No Source Code Available. https://medium.com/dedaub/
look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f

Dedaub. 2021d. Yield Skimming: Forcing Bad Swaps on Yield Farming. https://medium.com/dedaub/yield-skimming-
forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff

I. Dudina and A. Belevantsev. 2017. Using static symbolic execution to detect buffer overflows. Programming and Computer

Software 43 (2017), 277ś288.
Thomas Durieux, João F. Ferreira, Rui Abreu, and Pedro Cruz. 2020. Empirical Review of Automated Analysis Tools on

47,587 Ethereum Smart Contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering

(Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 530ś541. https://doi.org/10.
1145/3377811.3380364

E. Emerson and A. Sistla. 1996. Symmetry and Model Checking. Formal Methods in System Design 9 (08 1996), 105ś131.
https://doi.org/10.1007/BF00625970

Josselin Feist, Gustavo Grieco, and Alex Groce. 2019. Slither: A Static Analysis Framework for Smart Contracts. 2019
IEEE/ACM 2nd International Workshop on Emerging Trends in Software Engineering for Blockchain (WETSEB) (May 2019).
https://doi.org/10.1109/wetseb.2019.00008

Cormac Flanagan and Patrice Godefroid. 2005. Dynamic Partial-Order Reduction forModel Checking Software. In Proceedings
of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Long Beach, California, USA)
(POPL ’05). Association for Computing Machinery, New York, NY, USA, 110ś121. https://doi.org/10.1145/1040305.1040315

Patrice Godefroid. 2007. Compositional dynamic test generation. In Proc. 34th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL). ACM, 47ś54.
Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed automated random testing. In Proc. ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI). ACM, 213ś223. https://doi.org/10.1145/1065010.
1065036

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. Automated Whitebox Fuzz Testing. In NDSS, Vol. 8. 151ś166.
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/

Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox Fuzzing for Security Testing: SAGE Has Had
a Remarkable Impact at Microsoft. Commun. ACM 10, 1 (Jan. 2012), 20ś27. https://doi.org/10.1145/2090147.2094081

Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2019. Gigahorse: Thorough, Declarative Decompilation
of Smart Contracts. In Proceedings of the 41st International Conference on Software Engineering (Montreal, Quebec, Canada)
(ICSE ’19). IEEE Press, Piscataway, NJ, USA, 1176ś1186. https://doi.org/10.1109/ICSE.2019.00120

Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:
Surviving Out-of-Gas Conditions in Ethereum Smart Contracts. Proc. ACM Programming Languages 2, OOPSLA (Nov.
2018). https://doi.org/10.1145/3276486

Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020. Echidna: Effective, Usable, and Fast
Fuzzing for Smart Contracts. In Proceedings of the 29th ACM SIGSOFT International Symposium on Software Testing

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1145/1961296.1950396
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-540-24730-2_15
https://medium.com/dedaub/ethereum-pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e
https://medium.com/dedaub/ethereum-pawn-stars-5-7m-in-hard-assets-best-i-can-do-is-2-3m-b93604be503e
https://medium.com/dedaub/killing-a-bad-arbitrage-bot-f29e7e808c7d
https://medium.com/dedaub/killing-a-bad-arbitrage-bot-f29e7e808c7d
https://medium.com/dedaub/look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f
https://medium.com/dedaub/look-ma-no-source-hacking-a-defi-service-with-no-source-code-available-c40a6583f28f
https://medium.com/dedaub/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff
https://medium.com/dedaub/yield-skimming-forcing-bad-swaps-on-yield-farming-397361fd7c72?source=friends_link&sk=d146b3640321f0a3ccc80540b54368ff
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1145/3377811.3380364
https://doi.org/10.1007/BF00625970
https://doi.org/10.1109/wetseb.2019.00008
https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://www.microsoft.com/en-us/research/publication/automated-whitebox-fuzz-testing/
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1109/ICSE.2019.00120
https://doi.org/10.1145/3276486


163:28 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

and Analysis (Virtual Event, USA) (ISSTA 2020). Association for Computing Machinery, New York, NY, USA, 557ś560.
https://doi.org/10.1145/3395363.3404366

Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar. 2017.
Online Detection of Effectively Callback Free Objects with Applications to Smart Contracts. Proc. ACM Program. Lang. 2,
POPL, Article 48 (Dec. 2017), 28 pages. https://doi.org/10.1145/3158136

Ákos Hajdu and Dejan Jovanović. 2020. solc-verify: A Modular Verifier for Solidity Smart Contracts. In Verified Software.

Theories, Tools, and Experiments, Supratik Chakraborty and Jorge A. Navas (Eds.). Springer International Publishing,
Cham, 161ś179.

Jingxuan He, Mislav Balunović, Nodar Ambroladze, Petar Tsankov, and Martin Vechev. 2019. Learning to Fuzz from Symbolic
Execution with Application to Smart Contracts. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and

Communications Security (London, United Kingdom) (CCS ’19). Association for Computing Machinery, New York, NY,
USA, 531ś548. https://doi.org/10.1145/3319535.3363230

E. Hildenbrandt, M. Saxena, N. Rodrigues, X. Zhu, P. Daian, D. Guth, B. Moore, D. Park, Y. Zhang, A. Stefanescu, and G.
Rosu. 2018. KEVM: A Complete Formal Semantics of the Ethereum Virtual Machine. In 2018 IEEE 31st Computer Security

Foundations Symposium (CSF). 204ś217. https://doi.org/10.1109/CSF.2018.00022
J.J. Honig. 2020. Incremental symbolic execution. http://essay.utwente.nl/81526/
Ranjit Jhala and Rupak Majumdar. 2009. Software Model Checking. ACM Comput. Surv. 41, 4, Article 21 (Oct. 2009), 54 pages.

https://doi.org/10.1145/1592434.1592438
Bo Jiang, Ye Liu, and W. K. Chan. 2018. ContractFuzzer: Fuzzing Smart Contracts for Vulnerability Detection. In Proceedings

of the 33rd ACM/IEEE International Conference on Automated Software Engineering (Montpellier, France) (ASE 2018).
Association for Computing Machinery, New York, NY, USA, 259ś269. https://doi.org/10.1145/3238147.3238177

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (July 1976), 385ś394. https:
//doi.org/10.1145/360248.360252

Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. 2017. Weakly Sensitive Analysis for Unbounded Iteration over JavaScript
Objects. In Programming Languages and Systems, Bor-Yuh Evan Chang (Ed.). Springer International Publishing, Cham,
148ś168.

Aashish Kolluri, Ivica Nikolic, Ilya Sergey, Aquinas Hobor, and Prateek Saxena. 2019. Exploiting the Laws of Order in Smart
Contracts. In Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis (Beijing,
China) (ISSTA 2019). Association for Computing Machinery, New York, NY, USA, 363ś373. https://doi.org/10.1145/
3293882.3330560

Georgios Konstantopoulos. 2021. [Informal public comment, July 15, 2021]. ETHSecurity Community Telegram channel.
Johannes Krupp and Christian Rossow. 2018. TEETHER: Gnawing at Ethereum to Automatically Exploit Smart Contracts. In

Proceedings of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA) (SEC’18). USENIX Association,
Berkeley, CA, USA, 1317ś1333. http://dl.acm.org/citation.cfm?id=3277203.3277303

Sifis Lagouvardos, Neville Grech, Ilias Tsatiris, and Yannis Smaragdakis. 2020. Precise Static Modeling of Ethereum łMemoryž.
Proc. ACM Program. Lang. 4, OOPSLA, Article 190 (Nov. 2020), 26 pages. https://doi.org/10.1145/3428258

You Li, Zhendong Su, Linzhang Wang, and Xuandong Li. 2013. Steering Symbolic Execution to Less Traveled Paths. In
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages &

Applications (Indianapolis, Indiana, USA) (OOPSLA ’13). Association for Computing Machinery, New York, NY, USA,
19ś32. https://doi.org/10.1145/2509136.2509553

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. 2016. Making Smart Contracts Smarter. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (Vienna, Austria) (CCS ’16).
Association for Computing Machinery, New York, NY, USA, 254ś269. https://doi.org/10.1145/2976749.2978309

B. Meyer. 2008. Seven Principles of Software Testing. Computer 41, 8 (2008), 99ś101. https://doi.org/10.1109/MC.2008.306
Michales, Jonah. 2021. Inside the War Room That Saved Primitive Finance. https://medium.com/immunefi/inside-the-war-

room-that-saved-primitive-finance-6509e2188c86
Anders Mùller and Michael I. Schwartzbach. 2018. Static Program Analysis. Department of Computer Science, Aarhus

University, http://cs.au.dk/˜amoeller/spa/, Accessed: 2020-11-20.
M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist, T. Brunson, and A. Dinaburg. 2019. Manticore: A

User-Friendly Symbolic Execution Framework for Binaries and Smart Contracts. In 2019 34th IEEE/ACM International

Conference on Automated Software Engineering (ASE). 1186ś1189. https://doi.org/10.1109/ASE.2019.00133
Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, and Quang Tran Minh. 2020. SFuzz: An Efficient Adaptive Fuzzer for Solidity

Smart Contracts. In Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea)
(ICSE ’20). Association for Computing Machinery, New York, NY, USA, 778ś788. https://doi.org/10.1145/3377811.3380334

Benjamin Barslev Nielsen and Anders Mùller. 2020. Value Partitioning: A Lightweight Approach to Relational Static Analysis
for JavaScript. In Proc. 34th European Conference on Object-Oriented Programming (ECOOP).

Flemming Nielson, Hanne R. Nielson, and Chris Hankin. 1999. Principles of Program Analysis.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/3395363.3404366
https://doi.org/10.1145/3158136
https://doi.org/10.1145/3319535.3363230
https://doi.org/10.1109/CSF.2018.00022
http://essay.utwente.nl/81526/
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.1145/3238147.3238177
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/3293882.3330560
https://doi.org/10.1145/3293882.3330560
http://dl.acm.org/citation.cfm?id=3277203.3277303
https://doi.org/10.1145/3428258
https://doi.org/10.1145/2509136.2509553
https://doi.org/10.1145/2976749.2978309
https://doi.org/10.1109/MC.2008.306
https://medium.com/immunefi/inside-the-war-room-that-saved-primitive-finance-6509e2188c86
https://medium.com/immunefi/inside-the-war-room-that-saved-primitive-finance-6509e2188c86
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3377811.3380334


Symbolic Value-Flow Static Analysis of Ethereum Smart Contracts 163:29

Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. 2018. Finding The Greedy, Prodigal, and
Suicidal Contracts at Scale. In Proceedings of the 34th Annual Computer Security Applications Conference (San Juan, PR,
USA) (ACSAC ’18). ACM, New York, NY, USA, 653ś663. https://doi.org/10.1145/3274694.3274743

C. Norris Ip and David L. Dill. 1993. Better Verification Through Symmetry. In Computer Hardware Description Languages

and their Applications, DAVID AGNEW, LUC CLAESEN, and RAUL CAMPOSANO (Eds.). North-Holland, Amsterdam, 97
ś 111. https://doi.org/10.1016/B978-0-444-81641-2.50012-5

Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow Analysis in Soot Using Value Contexts. In Proceedings

of the 2nd ACM SIGPLAN International Workshop on State Of the Art in Java Program Analysis (Seattle, Washington)
(SOAP ’13). Association for Computing Machinery, New York, NY, USA, 31ś36. https://doi.org/10.1145/2487568.2487569

Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner, Mark Grechanik, Kunal Taneja, Chen Fu,
and Qing Xie. 2012. CarFast: Achieving Higher Statement Coverage Faster. In Proceedings of the ACM SIGSOFT 20th

International Symposium on the Foundations of Software Engineering (Cary, North Carolina) (FSE ’12). Association for
Computing Machinery, New York, NY, USA, Article 35, 11 pages. https://doi.org/10.1145/2393596.2393636

Daniel Perez and Ben Livshits. 2021. Smart Contract Vulnerabilities: Vulnerable Does Not Imply Exploited. In 30th USENIX

Security Symposium (USENIX Security 21). USENIX Association, Vancouver, B.C. https://www.usenix.org/conference/
usenixsecurity21/presentation/perez

A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev. 2020. VerX: Safety Verification of Smart
Contracts. In 2020 IEEE Symposium on Security and Privacy (SP). 1661ś1677. https://doi.org/10.1109/SP40000.2020.00024

Primitive Finance. 2021. PrimitiveFi post-mortem analysis. https://primitivefinance.medium.com/postmortem-on-the-
primitive-finance-whitehack-of-february-21st-2021-17446c0f3122

Xavier Rival and Laurent Mauborgne. 2007. The Trace Partitioning Abstract Domain. ACM Trans. Program. Lang. Syst. 29, 5
(Aug. 2007), 26śes. https://doi.org/10.1145/1275497.1275501

Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo Maffei. 2020. EThor: Practical and Provably Sound
Static Analysis of Ethereum Smart Contracts. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and

Communications Security (Virtual Event, USA) (CCS ’20). Association for Computing Machinery, New York, NY, USA,
621ś640. https://doi.org/10.1145/3372297.3417250

Koushik Sen and Gul Agha. 2006. Cute and jCute: Concolic Unit Testing and Explicit Path Model-Checking Tools. In Proc.

International Conference on Computer Aided Verification (CAV). Springer, 419ś423.
Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing engine for C. In Proc. 13th ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE). ACM, 263ś272.
Micha Sharir and Amir Pnueli. 1981. Two Approaches to Interprocedural Data Flow Analysis. In Program flow analysis:

theory and applications, Steven S. Muchnick and Neil D. Jones (Eds.). Prentice-Hall, Inc., Englewood Cliffs, NJ, Chapter 7,
189ś233.

Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021. Symbolic Value-

Flow Static Analysis: Deep, Precise, Complete Modeling of Ethereum Smart Contracts (Artifact). https://doi.org/10.5281/
zenodo.5494813

Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Mùller. 2019. Static Analysis with Demand-Driven
Value Refinement. Proc. ACM Program. Lang. 3, OOPSLA, Article 140 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360566

The Certora team. 2017. The Certora Prover. https://www.certora.com
Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev, Evgeny Marchenko, and Yaroslav Alexan-

drov. 2018. SmartCheck: Static Analysis of Ethereum Smart Contracts. In Proceedings of the 1st International Workshop on

Emerging Trends in Software Engineering for Blockchain (Gothenburg, Sweden) (WETSEB ’18). Association for Computing
Machinery, New York, NY, USA, 9ś16. https://doi.org/10.1145/3194113.3194115

Nikolai Tillmann and Jonathan de Halleux. 2008. Pex - White Box Test Generation for .Net. In Proc. 2nd International

Conference on Tests And Proofs (TAP). Springer, 134ś153.
Nikolai Tillmann and Wolfram Schulte. 2006. Unit Tests Reloaded: Parameterized Unit Testing with Symbolic Execution.

IEEE Software 23, 4 (2006), 38ś47.
Christof Ferreira Torres, Julian Schütte, and Radu State. 2018. Osiris: Hunting for Integer Bugs in Ethereum Smart Contracts.

In Proceedings of the 34th Annual Computer Security Applications Conference (San Juan, PR, USA) (ACSAC ’18). Association
for Computing Machinery, New York, NY, USA, 664ś676. https://doi.org/10.1145/3274694.3274737

Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The Art of The Scam: Demystifying Honeypots in Ethereum
Smart Contracts. In 28th USENIX Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
1591ś1607. https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira

Trail of Bits. 2020a. Trail of Bits comments on average coverage. https://forum.openzeppelin.com/t/symbolic-execution/
2158/3 Accessed: 2020-11-20.

Trail of Bits. 2020b. Tweet on symbolic execution coverage. https://twitter.com/trailofbits/status/1223386823084384256
Accessed: 2020-11-20.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/3274694.3274743
https://doi.org/10.1016/B978-0-444-81641-2.50012-5
https://doi.org/10.1145/2487568.2487569
https://doi.org/10.1145/2393596.2393636
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://www.usenix.org/conference/usenixsecurity21/presentation/perez
https://doi.org/10.1109/SP40000.2020.00024
https://primitivefinance.medium.com/postmortem-on-the-primitive-finance-whitehack-of-february-21st-2021-17446c0f3122
https://primitivefinance.medium.com/postmortem-on-the-primitive-finance-whitehack-of-february-21st-2021-17446c0f3122
https://doi.org/10.1145/1275497.1275501
https://doi.org/10.1145/3372297.3417250
https://doi.org/10.5281/zenodo.5494813
https://doi.org/10.5281/zenodo.5494813
https://doi.org/10.1145/3360566
https://www.certora.com
https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3274694.3274737
https://www.usenix.org/conference/usenixsecurity19/presentation/ferreira
https://forum.openzeppelin.com/t/symbolic-execution/2158/3
https://forum.openzeppelin.com/t/symbolic-execution/2158/3
https://twitter.com/trailofbits/status/1223386823084384256


163:30 Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian Bünzli, and Martin Vechev. 2018. Securify:
Practical Security Analysis of Smart Contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 67ś82. https://doi.org/10.1145/3243734.
3243780

Various. 2017. libFuzzer ś a library for coverage-guided fuzz testing. https://llvm.org/docs/LibFuzzer.html
Various. 2020. SmartBugs: A Framework to Analyze Solidity Smart Contracts. https://github.com/smartbugs/smartbugs
Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction ledger. http://gavwood.com/paper.pdf.
Valentin Wüstholz and Maria Christakis. 2020a. Harvey: A Greybox Fuzzer for Smart Contracts. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software

Engineering (Virtual Event, USA) (ESEC/FSE 2020). Association for Computing Machinery, New York, NY, USA, 1398ś1409.
https://doi.org/10.1145/3368089.3417064

Valentin Wüstholz and Maria Christakis. 2020b. Targeted Greybox Fuzzing with Static Lookahead Analysis. In Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul, South Korea) (ICSE ’20). Association for
Computing Machinery, New York, NY, USA, 789ś800. https://doi.org/10.1145/3377811.3380388

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 163. Publication date: October 2021.

https://doi.org/10.1145/3243734.3243780
https://doi.org/10.1145/3243734.3243780
https://llvm.org/docs/LibFuzzer.html
https://github.com/smartbugs/smartbugs
https://doi.org/10.1145/3368089.3417064
https://doi.org/10.1145/3377811.3380388

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Symbolic+Value-Flow Static Analysis
	3.1 Overview
	3.2 Precision and Dependencies
	3.3 Soundness and Completeness

	4 Analysis Model
	4.1 Input and Environment
	4.2 Analysis

	5 Specifics and Implementation
	5.1 Technical Discussion
	5.2 Solver

	6 Setting and Real-World Application
	6.1 Ethereum Smart Contracts
	6.2 Practical Impact

	7 Controlled Evaluation
	7.1 Setup
	7.2 Ability to Detect Bugs
	7.3 (Likely) False Warnings

	8 Related Work
	9 Conclusions
	Acknowledgments
	References

